Poster
Attacking Binarized Neural Networks
Angus Galloway · Graham W Taylor · Medhat Moussa
East Meeting level; 1,2,3 #10
[
Abstract
]
Abstract:
Neural networks with low-precision weights and activations offer compelling
efficiency advantages over their full-precision equivalents. The two most
frequently discussed benefits of quantization are reduced memory consumption,
and a faster forward pass when implemented with efficient bitwise
operations. We propose a third benefit of very low-precision neural networks:
improved robustness against some adversarial attacks, and in the worst case,
performance that is on par with full-precision models. We focus on the very
low-precision case where weights and activations are both quantized to $\pm$1,
and note that stochastically quantizing weights in just one layer can sharply
reduce the impact of iterative attacks. We observe that non-scaled binary neural
networks exhibit a similar effect to the original \emph{defensive distillation}
procedure that led to \emph{gradient masking}, and a false notion of security.
We address this by conducting both black-box and white-box experiments with
binary models that do not artificially mask gradients.
Live content is unavailable. Log in and register to view live content