Skip to yearly menu bar Skip to main content


Search All 2021 Events
 

200 Results

<<   <   Page 2 of 17   >   >>
Workshop
Fri 14:02 Invited Talk: A deep learning theory for neural networks grounded in physics
Benjamin Scellier
Workshop
Fri 11:40 Deep Kernels with Probabilistic Embeddings for Small-Data Learning
Ankur Mallick
Workshop
On Lottery Tickets and Minimal Task Representations in Deep Reinforcement Learning
Marc Vischer · Henning Sprekeler · Robert Lange
Poster
Thu 17:00 Adapting to Reward Progressivity via Spectral Reinforcement Learning
Michael Dann · John Thangarajah
Poster
Thu 9:00 Deconstructing the Regularization of BatchNorm
Yann Dauphin · Ekin Cubuk
Workshop
Fri 11:52 DeepSMOTE: Deep Learning for Imbalanced Data
Bartosz Krawczyk
Workshop
Fri 11:00 Keynote 6: Liangwei Ge. Title: Deep learning challenges and how Intel is addressing them
Poster
Thu 17:00 Neural Thompson Sampling
Weitong ZHANG · Dongruo Zhou · Lihong Li · Quanquan Gu
Workshop
Fri 5:15 Geometric Deep Learning
Fernando Gama
Oral
Thu 19:00 Theoretical Analysis of Self-Training with Deep Networks on Unlabeled Data
Colin Wei · Kendrick Shen · Yining Chen · Tengyu Ma
Poster
Thu 17:00 Theoretical Analysis of Self-Training with Deep Networks on Unlabeled Data
Colin Wei · Kendrick Shen · Yining Chen · Tengyu Ma
Poster
Wed 17:00 Simple Augmentation Goes a Long Way: ADRL for DNN Quantization
Lin Ning · Guoyang Chen · Weifeng Zhang · Xipeng Shen