Skip to yearly menu bar Skip to main content


Virtual presentation / poster accept

BALTO: fast tensor program optimization with diversity-based active learning

Jun Bi · Xiaqing Li · Qi Guo · Rui Zhang · Yuanbo Wen · Xing Hu · Zidong Du · Xinkai Song · Yifan Hao · Yunji Chen

Keywords: [ Applications ]


Abstract: Tensor program optimization (TPO) based on pre-trained models can effectively reduce the computing time of deep neural networks. However, training of such models is prohibitively expensive, which highly depends on a large-scale dataset and thus requires tremendous time-consuming performance measurements (more than 1 million) on target platforms. In this paper, we propose BALTO, a fast TPO approach with biased-diversity-based active learning, aiming at reducing much lower training costs under similar optimization accuracy.The key insight is that random sampling of existing approaches suffers from a heavy redundancy of low-performance programs, which incurs tremendous duplicated time-consuming measurements. Inspired by this, BALTO removes such redundancy by introducing active learning (AL) to TPO for a much lower training cost. However, applying AL with a brute-force way in BALTO can lead to an overestimation problem. To address this, we further propose a biased-diversity-based diversity scheme specially designed for BALTO. We compare BALTO against TenSet on $6$ typical hardware platforms over $2$ learning models. Experimental results show that, on average, BALTO only requires 5% of the total performance measurements of TenSet to achieve the same or higher model accuracy. Moreover, the optimized tensor programs even outperform that of TenSet by 1.06% due to higher model accuracy.

Chat is not available.