Virtual presentation / poster accept
Re-Imagen: Retrieval-Augmented Text-to-Image Generator
Wenhu Chen · Hexiang Hu · Chitwan Saharia · William Cohen
Keywords: [ information retrieval ] [ image generation ] [ diffusion model ] [ Knowledge Grounding ] [ Applications ]
Research on text-to-image generation has witnessed significant progress in generating diverse and photo-realistic images, driven by diffusion and auto-regressive models trained on large-scale image-text data. Though state-of-the-art models can generate high-quality images of common entities, they often have difficulty generating images of uncommon entities, such as Chortai (dog)' or
Picarones (food)'. To tackle this issue, we present the Retrieval-Augmented Text-to-Image Generator (Re-Imagen), a generative model that uses retrieved information to produce high-fidelity and faithful images, even for rare or unseen entities. Given a text prompt, Re-Imagen accesses an external multi-modal knowledge base to retrieve relevant (image, text) pairs, and uses them as references to generate the image. With this retrieval step, Re-Imagen is augmented with the knowledge of high-level semantics and low-level visual details of the mentioned entities, and thus improves its accuracy in generating the entities' visual appearances. We train Re-Imagen on a constructed dataset containing (image,text,retrieval) triples to teach the model to ground on both text prompt and retrieval. Furthermore, we develop a new sampling strategy to interleave the classifier-free guidance for text and retrieval condition to balance the text and retrieval alignment. Re-Imagen achieves new SoTA FID results on two image generation benchmarks, such as COCO (\ie, FID = 5.25) and WikiImage (\ie, FID = 5.82) without fine-tuning. To further evaluate the capabilities of the model, we introduce EntityDrawBench, a new benchmark that evaluates image generation for diverse entities, from frequent to rare, across multiple visual domains. Human evaluation on EntityDrawBench shows that Re-Imagen performs on par with the best prior models in photo-realism, but with significantly better real-world faithfulness, especially on less frequent entities.