Poster
|
Mon 2:30
|
D4FT: A Deep Learning Approach to Kohn-Sham Density Functional Theory
Tianbo Li · Min Lin · Zheyuan Hu · Kunhao Zheng · Giovanni Vignale · Kenji Kawaguchi · A. Castro Neto · Kostya Novoselov · shuicheng YAN
|
|
Oral
|
Mon 1:30
|
D4FT: A Deep Learning Approach to Kohn-Sham Density Functional Theory
Tianbo Li · Min Lin · Zheyuan Hu · Kunhao Zheng · Giovanni Vignale · Kenji Kawaguchi · A. Castro Neto · Kostya Novoselov · shuicheng YAN
|
|
Workshop
|
Thu 6:40
|
Machine learning approaches to improve the exchange and correlation functional in Density functional Theory
Marivi Fernandez-Serra
|
|
Poster
|
|
Offline Reinforcement Learning with Differentiable Function Approximation is Provably Efficient
Ming Yin · Mengdi Wang · Yu-Xiang Wang
|
|
Poster
|
Tue 2:30
|
Learning Rates as a Function of Batch Size: A Random Matrix Theory Approach to Neural Network Training
Diego Granziol · Stefan Zohren · S Roberts
|
|
Oral
|
Mon 6:10
|
Implicit Bias of Large Depth Networks: a Notion of Rank for Nonlinear Functions
Arthur Jacot
|
|
Poster
|
|
Optimal Activation Functions for the Random Features Regression Model
Jianxin Wang · José Bento
|
|
Poster
|
Mon 7:30
|
Implicit Bias of Large Depth Networks: a Notion of Rank for Nonlinear Functions
Arthur Jacot
|
|
Oral
|
Mon 1:20
|
Disentanglement with Biological Constraints: A Theory of Functional Cell Types
James Whittington · Will Dorrell · Surya Ganguli · Timothy Behrens
|
|
Poster
|
Mon 2:30
|
Disentanglement with Biological Constraints: A Theory of Functional Cell Types
James Whittington · Will Dorrell · Surya Ganguli · Timothy Behrens
|
|
Poster
|
|
Understanding Influence Functions and Datamodels via Harmonic Analysis
Nikunj Saunshi · Arushi Gupta · Mark Braverman · Sanjeev Arora
|
|
Poster
|
|
Near-Optimal Deployment Efficiency in Reward-Free Reinforcement Learning with Linear Function Approximation
Dan Qiao · Yu-Xiang Wang
|
|