Skip to yearly menu bar Skip to main content


Search All 2023 Events
 

32 Results

<<   <   Page 1 of 3   >   >>
Poster
Mon 2:30 D4FT: A Deep Learning Approach to Kohn-Sham Density Functional Theory
Tianbo Li · Min Lin · Zheyuan Hu · Kunhao Zheng · Giovanni Vignale · Kenji Kawaguchi · A. Castro Neto · Kostya Novoselov · shuicheng YAN
Oral
Mon 1:30 D4FT: A Deep Learning Approach to Kohn-Sham Density Functional Theory
Tianbo Li · Min Lin · Zheyuan Hu · Kunhao Zheng · Giovanni Vignale · Kenji Kawaguchi · A. Castro Neto · Kostya Novoselov · shuicheng YAN
Workshop
Thu 6:40 Machine learning approaches to improve the exchange and correlation functional in Density functional Theory
Marivi Fernandez-Serra
Poster
Offline Reinforcement Learning with Differentiable Function Approximation is Provably Efficient
Ming Yin · Mengdi Wang · Yu-Xiang Wang
Poster
Tue 2:30 Learning Rates as a Function of Batch Size: A Random Matrix Theory Approach to Neural Network Training
Diego Granziol · Stefan Zohren · S Roberts
Oral
Mon 6:10 Implicit Bias of Large Depth Networks: a Notion of Rank for Nonlinear Functions
Arthur Jacot
Poster
Optimal Activation Functions for the Random Features Regression Model
Jianxin Wang · José Bento
Poster
Mon 7:30 Implicit Bias of Large Depth Networks: a Notion of Rank for Nonlinear Functions
Arthur Jacot
Oral
Mon 1:20 Disentanglement with Biological Constraints: A Theory of Functional Cell Types
James Whittington · Will Dorrell · Surya Ganguli · Timothy Behrens
Poster
Mon 2:30 Disentanglement with Biological Constraints: A Theory of Functional Cell Types
James Whittington · Will Dorrell · Surya Ganguli · Timothy Behrens
Poster
Understanding Influence Functions and Datamodels via Harmonic Analysis
Nikunj Saunshi · Arushi Gupta · Mark Braverman · Sanjeev Arora
Poster
Near-Optimal Deployment Efficiency in Reward-Free Reinforcement Learning with Linear Function Approximation
Dan Qiao · Yu-Xiang Wang