Skip to yearly menu bar Skip to main content


Search All 2023 Events
 

14 Results

<<   <   Page 1 of 2   >   >>
Poster
Near-Optimal Deployment Efficiency in Reward-Free Reinforcement Learning with Linear Function Approximation
Dan Qiao · Yu-Xiang Wang
Poster
Optimal Conservative Offline RL with General Function Approximation via Augmented Lagrangian
Paria Rashidinejad · Hanlin Zhu · Kunhe Yang · Stuart Russell · Jiantao Jiao
Poster
Sample Complexity of Nonparametric Off-Policy Evaluation on Low-Dimensional Manifolds using Deep Networks
Xiang Ji · Minshuo Chen · Mengdi Wang · Tuo Zhao
Poster
A General Framework for Sample-Efficient Function Approximation in Reinforcement Learning
Zixiang Chen · Chris Junchi Li · Angela Yuan · Quanquan Gu · Michael Jordan
Poster
Wed 7:30 Provably Efficient Risk-Sensitive Reinforcement Learning: Iterated CVaR and Worst Path
Yihan Du · Siwei Wang · Longbo Huang
Poster
Tue 2:30 Provable Sim-to-real Transfer in Continuous Domain with Partial Observations
Jiachen Hu · Han Zhong · Chi Jin · Liwei Wang
Poster
Wed 2:30 Hybrid RL: Using both offline and online data can make RL efficient
Yuda Song · Yifei Zhou · Ayush Sekhari · Drew Bagnell · Akshay Krishnamurthy · Wen Sun
Poster
The Role of Coverage in Online Reinforcement Learning
Tengyang Xie · Dylan Foster · Yu Bai · Nan Jiang · Sham Kakade
Poster
Wed 7:30 Efficiently Computing Nash Equilibria in Adversarial Team Markov Games
Fivos Kalogiannis · Ioannis Anagnostides · Ioannis Panageas · Emmanouil-Vasileios Vlatakis-Gkaragkounis · Vaggos Chatziafratis · Stelios Stavroulakis
Oral
Wed 6:10 Efficiently Computing Nash Equilibria in Adversarial Team Markov Games
Fivos Kalogiannis · Ioannis Anagnostides · Ioannis Panageas · Emmanouil-Vasileios Vlatakis-Gkaragkounis · Vaggos Chatziafratis · Stelios Stavroulakis
Poster
Nearly Minimax Optimal Offline Reinforcement Learning with Linear Function Approximation: Single-Agent MDP and Markov Game
Wei Xiong · Han Zhong · Chengshuai Shi · Cong Shen · Liwei Wang · Tong Zhang
Poster
Safe Exploration Incurs Nearly No Additional Sample Complexity for Reward-Free RL
Ruiquan Huang · Jing Yang · Yingbin Liang