Fri 11:15 p.m. - 11:30 p.m.
|
Introduction and Opening Remarks
(
Introduction
)
>
SlidesLive Video
|
🔗
|
Fri 11:30 p.m. - 12:00 a.m.
|
Invited Talk 1
(
Invited Talk
)
>
SlidesLive Video
|
Johannes Brandstetter
🔗
|
Sat 12:00 a.m. - 12:30 a.m.
|
Invited Talk 2
(
Invited Talk
)
>
SlidesLive Video
|
Jakob Macke
🔗
|
Sat 12:30 a.m. - 12:45 a.m.
|
Break
(
Coffee Break
)
>
|
🔗
|
Sat 12:45 a.m. - 1:00 a.m.
|
Contributed Talk 1
(
Contributed Talk
)
>
link
SlidesLive Video
|
Long Wei
🔗
|
Sat 1:00 a.m. - 1:30 a.m.
|
Poster Session 1
(
Poster
)
>
|
🔗
|
Sat 1:30 a.m. - 2:00 a.m.
|
Invited Talk 3
(
Invited Talk
)
>
SlidesLive Video
|
Paula Harder
🔗
|
Sat 2:00 a.m. - 2:15 a.m.
|
Contributed Talk 2
(
Contributed Talk
)
>
link
SlidesLive Video
|
Moshe Eliasof · Eldad Haber · Eran Treister · Carola-Bibiane Schönlieb
🔗
|
Sat 2:15 a.m. - 2:45 a.m.
|
Invited Talk 4
(
Invited Talk
)
>
SlidesLive Video
|
Chris Rackauckas
🔗
|
Sat 2:45 a.m. - 3:15 a.m.
|
Invited Talk 5
(
Invited Talk
)
>
SlidesLive Video
|
Meire Fortunato
🔗
|
Sat 3:15 a.m. - 3:45 a.m.
|
Poster Session 2
|
🔗
|
Sat 3:45 a.m. - 4:45 a.m.
|
Break
(
Lunch
)
>
|
🔗
|
Sat 4:45 a.m. - 5:00 a.m.
|
Contributed Talk 3
(
Contributed Talk
)
>
link
SlidesLive Video
|
Miguel Liu-Schiaffini · Julius Berner · Boris Bonev · Thorsten Kurth · Kamyar Azizzadenesheli · anima anandkumar
🔗
|
Sat 5:00 a.m. - 5:30 a.m.
|
Invited Talk 6
(
Invited Talk
)
>
SlidesLive Video
|
Alex Townsend
🔗
|
Sat 5:30 a.m. - 6:15 a.m.
|
Panel Discussion
(
Panel Discussion
)
>
SlidesLive Video
|
Kevin Carlberg · Marta D'Elia · Shirley ho · Max Welling
🔗
|
Sat 6:15 a.m. - 6:45 a.m.
|
Break
(
Coffee Break
)
>
|
🔗
|
Sat 6:45 a.m. - 7:00 a.m.
|
Contributed Talk 4
(
Contributed Talk
)
>
link
SlidesLive Video
|
Shengchao Liu · weitao du · Yanjing Li · Zhuoxinran Li · Vignesh Bhethanabotla · Nakul Rampal · Omar Yaghi · Christian Borgs · anima anandkumar · Hongyu Guo
🔗
|
Sat 7:00 a.m. - 7:30 a.m.
|
Invited Talk 7
(
Invited Talk
)
>
SlidesLive Video
|
Youngsoo Choi
🔗
|
Sat 7:30 a.m. - 8:00 a.m.
|
Invited Talk 8
(
Invited Talk
)
>
SlidesLive Video
|
Steve Brunton
🔗
|
Sat 8:00 a.m. - 8:00 a.m.
|
Closing Remarks
(
Closing
)
>
SlidesLive Video
|
🔗
|
-
|
Application of gauge equivariant convolutional neural networks to learning a fixed point action for SU(3) gauge theory
(
Poster
)
>
link
|
Kieran Holland · Andreas Ipp · David Müller · Urs Wenger
🔗
|
-
|
Physics-constrained DeepONet for Surrogate CFD models: a curved backward-facing step case
(
Poster
)
>
link
|
Anas Jnini · Harshinee Goordoyal · Sujal Dave · Artem Korobenko · Flavio Vella · Katharine Fraser
🔗
|
-
|
Investigation of Latent Time-Scales in Neural ODE Surrogate Models
(
Poster
)
>
link
|
Ashish Nair · Shivam Barwey · Pinaki Pal · Romit Maulik
🔗
|
-
|
Minimizing Structural Vibrations via Guided Diffusion Design Optimization
(
Poster
)
>
link
|
Jan van Delden · Julius Schultz · Christopher Blech · Sabine Langer · Timo Lüddecke
🔗
|
-
|
DOF: Accelerating High-order Differential Operators with Forward Propagation
(
Poster
)
>
link
|
Ruichen Li · Chuwei Wang · Haotian Ye · Di He · Liwei Wang
🔗
|
-
|
PointSAGE: Mesh-independent superresolution approach to fluid flow predictions
(
Poster
)
>
link
|
Rajat sarkar · Sudhir Aripirala · Vishal Jadhav · Sagar Srinivas Sakhinana · Venkataramana Runkana
🔗
|
-
|
Application of Neural Ordinary Differential Equations for Tokamak Plasma Dynamics Analysis
(
Poster
)
>
link
|
Zefang Liu · Weston Stacey
🔗
|
-
|
Hierarchy-based Clifford Group Equivariant Message Passing Neural Networks
(
Poster
)
>
link
|
Takashi Maruyama · Francesco Alesiani
🔗
|
-
|
XDDPM: EXPLAINABLE DENOISING DIFFUSION PROB- ABILISTIC MODEL FOR SCIENTIFIC MODELING
(
Poster
)
>
link
|
Qianru Zhang · Chenglei Yu · Yudong Yan · Xiangyu Kuang · Yi Ma · Yuansheng Cao · Siu Ming Yiu · Tailin Wu
🔗
|
-
|
CLIFFORD NEURAL OPERATORS ON ATMOSPHERIC DATA INFLUENCED PARTIAL DIFFERENTIAL EQUATIONS
(
Poster
)
>
link
|
Sujit Roy · Wei Ji Leong · Rajat Shinde · Christopher Phillips · Kumar Ankur · Manil Maskey · Rahul Ramachandran
🔗
|
-
|
Generative PDE Control
(
Poster
)
>
link
|
Long Wei · Peiyan Hu · Ruiqi Feng · Yixuan Du · Tao Zhang · Rui Wang · Yue Wang · Zhi-Ming Ma · Tailin Wu
🔗
|
-
|
Targeted Reduction of Causal Models
(
Poster
)
>
link
|
Armin Kekić · Bernhard Schoelkopf · michel besserve
🔗
|
-
|
Consistency Matters: Neural ODE Parameters are Dependent on the Training Numerical Method
(
Poster
)
>
link
|
C. Coelho · M.Fernanda Costa · Luís Ferrás
🔗
|
-
|
FASTVPINNS: A FAST, VERSATILE AND ROBUST VARIATIONAL PINNS FRAMEWORK FOR FORWARD AND INVERSE PROBLEMS IN SCIENCE
(
Poster
)
>
link
|
Divij Ghose · Thivin Anandh · Sashikumaar Ganesan
🔗
|
-
|
Mixture of Neural Operators: Incorporating Historical Information for Longer Rollouts
(
Poster
)
>
link
|
Harris Abdul Majid · Francesco Tudisco
🔗
|
-
|
Neural SPH: Improved Neural Modeling of Lagrangian Fluid Dynamics
(
Poster
)
>
link
|
Artur Toshev · Jonas A Erbesdobler · Nikolaus Adams · Johannes Brandstetter
🔗
|
-
|
Data-Driven Higher Order Differential Equations Inspired Graph Neural Networks
(
Poster
)
>
link
|
Moshe Eliasof · Eldad Haber · Eran Treister · Carola-Bibiane Schönlieb
🔗
|
-
|
Scaling Transformers for Skillful and Reliable Medium-range Weather Forecasting
(
Poster
)
>
link
|
Tung Nguyen · Rohan Shah · Hritik Bansal · Troy Arcomano · Sandeep Madireddy · Romit Maulik · Veerabhadra Kotamarthi · Ian Foster · Aditya Grover
🔗
|
-
|
Vectorized Conditional Neural Fields: A Framework for Solving Time-dependent PDEs
(
Poster
)
>
link
|
Jan Hagnberger · Marimuthu Kalimuthu · Mathias Niepert
🔗
|
-
|
MATHEMATICAL MODELING OF SPATIO-TEMPORAL DISEASE SPREADING USING PDES FOR MACHINE LEARNING
(
Poster
)
>
link
|
Jost Arndt · Jackie Ma
🔗
|
-
|
Efficient GPU-Accelerated Global Optimization for Inverse Problems
(
Poster
)
>
link
|
Utkarsh Utkarsh · Vaibhav Dixit · Julian Samaroo · Avik Pal · Alan Edelman · Chris Rackauckas
🔗
|
-
|
Ensemble learning for Physics Informed Neural Networks: a Gradient Boosting approach
(
Poster
)
>
link
|
Zhiwei Fang · Sifan Wang · Paris Perdikaris
🔗
|
-
|
Physics-Informed Koopman Network for time-series prediction of dynamical systems
(
Poster
)
>
link
|
Yuying Liu · Aleksei Sholokhov · Hassan Mansour · Saleh Nabi
🔗
|
-
|
Neural Context Flows for Learning Generalizable Dynamical Systems
(
Poster
)
>
link
|
Roussel Desmond Nzoyem · David Barton · Tom Deakin
🔗
|
-
|
Hessian Reparametrization for Coarse-grained Energy Minimization
(
Poster
)
>
link
|
Nima Dehmamy · Csaba Both · Jeet Mohapatra · Subhro Das · Tommi Jaakkola
🔗
|
-
|
A Novel ML Model for Numerical Simulations Leveraging Fourier Neural Operators
(
Poster
)
>
link
|
Ali Takbiri-Borujeni · Mohammad Kazemi · Sam Takbiri
🔗
|
-
|
Uncertainty Quantification for Fourier Neural Operators
(
Poster
)
>
link
|
Tobias Weber · Emilia Magnani · Marvin Pförtner · Philipp Hennig
🔗
|
-
|
Comparing and Contrasting Deep Learning Weather Prediction Backbones on Navier-Stokes Dynamics
(
Poster
)
>
link
|
Matthias Karlbauer · Danielle Maddix · Abdul Fatir Ansari · Boran Han · Gaurav Gupta · Bernie Wang · Andrew Stuart · Michael W Mahoney
🔗
|
-
|
Equivariant Neural Fields For Symmetry Preserving Continous PDE Forecasting
(
Poster
)
>
link
|
David Knigge · David Wessels · Riccardo Valperga · Samuele Papa · Efstratios Gavves · Erik Bekkers
🔗
|
-
|
LEARN TO ADAPT PARAMETRIC SOLVERS UNDER INCOMPLETE PHYSICS
(
Poster
)
>
link
|
Armand Kassaï Koupaï · Yuan Yin · patrick Gallinari
🔗
|
-
|
Learning iterative algorithms to solve PDEs.
(
Poster
)
>
link
|
Lise Le Boudec · Emmanuel de Bézenac · Louis Serrano · Yuan Yin · patrick Gallinari
🔗
|
-
|
MultiSTOP: Solving Functional Equations with Reinforcement Learning
(
Poster
)
>
link
|
Alessandro Trenta · Davide Bacciu · Andrea Cossu · Pietro Ferrero
🔗
|
-
|
Neural operators with localized integral and differential kernels
(
Poster
)
>
link
|
Miguel Liu-Schiaffini · Julius Berner · Boris Bonev · Thorsten Kurth · Kamyar Azizzadenesheli · anima anandkumar
🔗
|
-
|
Optimizing Computationally-Intensive Simulations Using a Biologically-Inspired Acquisition Function and a Fourier Neural Operator Surrogate
(
Poster
)
>
link
|
John Lins · Wei Liu
🔗
|
-
|
Approximating Family of Steep Traveling Wave Solutions to Fisher's Equation with PINNs
(
Poster
)
>
link
|
Franz M. Rohrhofer · Stefan Posch · Clemens Gößnitzer · Bernhard C Geiger
🔗
|
-
|
Solving Poisson Equations using Neural Walk-on-Spheres
(
Poster
)
>
link
|
Hong Chul Nam · Julius Berner · anima anandkumar
🔗
|
-
|
CONTINUOUS-TIME NEURAL NETWORKS FOR MODELING LINEAR DYNAMICAL SYSTEMS
(
Poster
)
>
link
|
Chinmay Datar · Adwait Datar · Felix Dietrich · Wil Schilders
🔗
|
-
|
Joint Parameter and Parameterization Inference with Uncertainty Quantification Through Differentiable Programming
(
Poster
)
>
link
|
Yongquan Qu · Mohamed Aziz Bhouri · Pierre Gentine
🔗
|
-
|
The conjugate kernel for efficient training of physics-informed deep operator networks
(
Poster
)
>
link
|
Amanda Howard · Saad Qadeer · Andrew Engel · Adam Tsou · Max Vargas · Tony Chiang · Panos Stinis
🔗
|
-
|
Physics-Informed Machine Learning for Fluid Flow Prediction in Porous Media
(
Poster
)
>
link
|
Ali Takbiri-Borujeni · Mohammad Kazemi · Sam Takbiri
🔗
|
-
|
Conformalized Physics-Informed Neural Networks
(
Poster
)
>
link
|
Lena Podina · Torabi Rad · Mohammad Kohandel
🔗
|
-
|
Latent Diffusion Transformer with Local Neural Field as PDE Surrogate Model
(
Poster
)
>
link
|
Louis Serrano · Jean-Noël Vittaut · patrick Gallinari
🔗
|
-
|
On training Physics-Informed Neural Networks for Oscillating Problems
(
Poster
)
>
link
|
Martin Hofmann-Wellenhof · Alexander Fuchs · Franz Pernkopf
🔗
|
-
|
Learning time-dependent PDE via graph neural networks and deep operator network for robust accuracy on irregular grids
(
Poster
)
>
link
|
Sung Woong Cho · JaeYong Lee · Hyung Ju Hwang
🔗
|
-
|
Learning The Delay in Delay Differential Equations
(
Poster
)
>
link
|
Robert Stephany · Maria Oprea · Gabriella Torres Nothaft · Mark Walth · Arnaldo Rodriguez-Gonzalez · William Clark
🔗
|
-
|
INTEGRAL PINNS FOR HYPERBOLIC CONSERVATION LAWS
(
Poster
)
>
link
|
Manvendra P. Rajvanshi · David Ketcheson
🔗
|
-
|
Traversing Chemical Space with Latent Potential Flows
(
Poster
)
>
link
|
Guanghao Wei · Yining Huang · Chenru Duan · Yue Song · Yuanqi Du
🔗
|
-
|
Neural Langevin-type Stochastic Differential Equations for Astronomical time series Classification under Irregular Observations
(
Poster
)
>
link
|
YongKyung Oh · Seungsu Kam · Dongyoung Lim · Sungil Kim
🔗
|
-
|
Efficient Fourier Neural Operators by Group Convolution and Channel Shuffling
(
Poster
)
>
link
|
Myungjoon Kim · Junhyung Park · Jonghwa Shin
🔗
|
-
|
A PHYSICS-INFORMED NEURAL NETWORK FOR COUPLED CALCIUM DYNAMICS IN A CABLE NEURON
(
Poster
)
>
link
|
Zachary Miksis · Gillian Queisser
🔗
|
-
|
Investigation of Numerical Diffusion in Aerodynamic Flow Simulations with Physics Informed Neural Networks
(
Poster
)
>
link
|
Alok Warey · Taeyoung Han · Shailendra Kaushik
🔗
|
-
|
Heteroscedastic uncertainty quantification in Physics-Informed Neural Networks
(
Poster
)
>
link
|
Olivier Claessen · Yuliya Shapovalova · Tom Heskes
🔗
|
-
|
GA-ReLU: an activation function for Geometric Algebra Networks applied to 2D Navier-Stokes PDEs
(
Poster
)
>
link
|
Alberto Pepe · Sven Buchholz · Joan Lasenby
🔗
|
-
|
CHAROT: Robustly controlling chaotic PDEs with partial observations
(
Poster
)
>
link
|
Max Weissenbacher · Anastasia Borovykh · Georgios Rigas
🔗
|
-
|
RBF-PINN: NON-FOURIER POSITIONAL EMBEDDING IN PHYSICS-INFORMED NEURAL NETWORKS
(
Poster
)
>
link
|
Chengxi Zeng · Tilo Burghardt · Alberto Gambaruto
🔗
|
-
|
Optimal Experimental Design for Bayesian Inverse Problems using Energy-Based Couplings
(
Poster
)
>
link
|
Paula Cordero Encinar · Tobias Schröder · Andrew Duncan
🔗
|
-
|
Learning Stochastic Dynamics from Data
(
Poster
)
>
link
|
Ziheng Guo · Ming Zhong · Igor Cialenco
🔗
|
-
|
Physics-informed neural networks for sampling
(
Poster
)
>
link
|
Jingtong Sun · Julius Berner · Kamyar Azizzadenesheli · anima anandkumar
🔗
|
-
|
Zebra: a continuous generative transformer for solving parametric PDEs
(
Poster
)
>
link
|
Louis Serrano · Pierre ERBACHER · Jean-Noël Vittaut · patrick Gallinari
🔗
|
-
|
Multi-Lattice Sampling of Quantum Field Theories via Neural Operator-based Flows
(
Poster
)
>
link
|
Bálint Máté · François Fleuret
🔗
|
-
|
Verlet Flows: Exact-Likelihood Integrators for Flow-Based Generative Models
(
Poster
)
>
link
|
Ezra Erives · Bowen Jing · Tommi Jaakkola
🔗
|
-
|
Adaptive Multilevel Neural Networks for Parametric PDEs with Error Estimation
(
Poster
)
>
link
|
Janina Enrica Schütte · Martin Eigel
🔗
|
-
|
Estimating field parameters from multiphysics governing equations with scarce data
(
Poster
)
>
link
|
Xuyang Li · Masmoudi · Nizar Lajnef · Vishnu Boddeti
🔗
|
-
|
Galerkin meets Laplace: Fast uncertainty estimation in neural PDEs
(
Poster
)
>
link
|
Christian Jimenez · Antonio Vergari · Aretha Teckentrup · Konstantinos Zygalakis
🔗
|
-
|
Multigrid-Augmented Deep Learning Preconditioners for the Helmholtz Equation using Compact Implicit Layers
(
Poster
)
>
link
|
Ido Ben-Yair · Bar Lerer · Eran Treister
🔗
|
-
|
PDEformer: Towards a Foundation Model for One-Dimensional Partial Differential Equations
(
Poster
)
>
link
|
Zhanhong Ye · Xiang Huang · Leheng Chen · Hongsheng Liu · Zidong Wang · Bin Dong
🔗
|
-
|
APPLICATIONS OF FOURIER NEURAL OPERATORS IN THE IFMIFDONES ACCELERATOR
(
Poster
)
>
link
|
Guillermo Rodríguez-Llorente · Galo Romero · Roberto Gómez-Espinosa Martín
🔗
|
-
|
Extension of Physics-informed Neural Networks to Solving Parameterized PDEs
(
Poster
)
>
link
|
Woojin Cho · Minju Jo · Haksoo Lim · Kookjin Lee · Dongeun Lee · Sanghyun Hong · Noseong Park
🔗
|
-
|
On Representing Electronic Wave Functions with Sign Equivariant Neural Networks
(
Poster
)
>
link
|
Nicholas Gao · Stephan Günnemann
🔗
|
-
|
Accelerating Neural Differential Equations for Irregularly-Sampled Dynamical Systems Using Variational Formulation
(
Poster
)
>
link
|
Hongjue Zhao · Yuchen Wang · Hairong Qi · Jiajia Li · Lui Sha · Han Zhao · Huajie Shao
🔗
|
-
|
Comparing PINNs Across Frameworks: JAX, TensorFlow, and PyTorch
(
Poster
)
>
link
|
Reza Akbarian Bafghi · Maziar Raissi
🔗
|
-
|
PINA: a PyTorch Framework for Solving Differential Equations by Deep Learning for Research and Production Environments
(
Poster
)
>
link
|
Dario Coscia · Nicola Demo · Gianluigi Rozza
🔗
|
-
|
AutoBasisEncoder: Pre-trained Neural Field Basis via Autoencoding for Operator Learning
(
Poster
)
>
link
|
Thomas Wang · Nicolas Baskiotis · patrick Gallinari
🔗
|
-
|
JAX-SPH: A Differentiable Smoothed Particle Hydrodynamics Framework
(
Poster
)
>
link
|
Artur Toshev · Harish Ramachandran · Jonas A Erbesdobler · Gianluca Galletti · Johannes Brandstetter · Nikolaus Adams
🔗
|
-
|
Data-driven Multi-Fidelity Modelling for Time-dependent Partial Differential Equations using Convolutional Neural Networks
(
Poster
)
>
link
|
Freja Terp Petersen · Allan Engsig-Karup
🔗
|
-
|
INVESTIGATING THE EFFECTS OF PLANT DIVERSITY ON SOIL THERMAL DIFFUSIVITY USING PHYSICS- INFORMED NEURAL NETWORKS
(
Poster
)
>
link
|
Gideon Stein · Sai Karthikeya Vemuri · Yuanyuan Huang · Anne Ebeling · Nico Eisenhauer · Maha Shadaydeh · Joachim Denzler
🔗
|
-
|
Extending Deep Learning Emulation Across Parameter Regimes to Assess Stochastically Driven Spontaneous Transition Events
(
Poster
)
>
link
|
Ira Shokar · Peter Haynes · Rich Kerswell
🔗
|
-
|
Semiparametric Inference and Equation Discovery with the Bayesian Machine Scientist
(
Poster
)
>
link
|
Kai-Hendrik Cohrs · Gherardo Varando · Roger Guimerà · Marta Pardo · Gustau Camps-Valls
🔗
|
-
|
Learning a vector field from snapshots of unidentified particles rather than particle trajectories
(
Poster
)
>
link
|
Yunyi Shen · Renato Berlinghieri · Tamara Broderick
🔗
|
-
|
Neural Parameter Regression for Explicit Representations of PDE Solution Operators
(
Poster
)
>
link
|
Konrad Mundinger · Max Zimmer · Sebastian Pokutta
🔗
|
-
|
Integrating Kernel Methods and Deep Neural Networks for Solving PDEs
(
Poster
)
>
link
|
Carlos Mora · Amin Yousefpour · Shirin Hosseinmardi · Ramin Bostanabad
🔗
|
-
|
A Multi-Grained Symmetric Differential Equation Model for Learning Protein-Ligand Binding Dynamics
(
Poster
)
>
link
|
11 presenters
Shengchao Liu · weitao du · Yanjing Li · Zhuoxinran Li · Vignesh Bhethanabotla · Nakul Rampal · Omar Yaghi · Christian Borgs · anima anandkumar · Hongyu Guo · Jennifer Chayes
🔗
|
-
|
Neural ODE for Multi-channel Attribution
(
Poster
)
>
link
|
YUDI ZHANG · Oshry Ben-Harush · Xin Liang · Siyu Zhu
🔗
|
-
|
Guided Autoregressive Diffusion Models with Applications to PDE Simulation
(
Poster
)
>
link
|
Federico Bergamin · Cristiana Diaconu · Aliaksandra Shysheya · Paris Perdikaris · José Miguel Hernández Lobato · Richard E Turner · Emile Mathieu
🔗
|
-
|
TUCKER DECOMPOSITION FOR INTERPRETABLE NEU- RAL ORDINARY DIFFERENTIAL EQUATIONS
(
Poster
)
>
link
|
Dimitrios Halatsis · Grigorios Chrysos · Joao Pereira · Michael Alummoottil
🔗
|
-
|
Mechanistic Neural Networks for Scientific Machine Learning
(
Poster
)
>
link
|
Adeel Pervez · Francesco Locatello · Efstratios Gavves
🔗
|
-
|
Data-Efficient Operator Learning via Unsupervised Pretraining and In-Context Learning
(
Poster
)
>
link
|
Wuyang Chen · Jialin Song · Pu Ren · Shashank Subramanian · Dmitriy Morozov · Michael W Mahoney
🔗
|