Fri 11:15 p.m. - 11:30 p.m.
|
Introduction and Opening Remarks
(
Introduction
)
>
SlidesLive Video
|
馃敆
|
Fri 11:30 p.m. - 12:00 a.m.
|
Invited Talk 1
(
Invited Talk
)
>
SlidesLive Video
|
Johannes Brandstetter
馃敆
|
Sat 12:00 a.m. - 12:30 a.m.
|
Invited Talk 2
(
Invited Talk
)
>
SlidesLive Video
|
Jakob Macke
馃敆
|
Sat 12:30 a.m. - 12:45 a.m.
|
Break
(
Coffee Break
)
>
|
馃敆
|
Sat 12:45 a.m. - 1:00 a.m.
|
Contributed Talk 1
(
Contributed Talk
)
>
link
SlidesLive Video
|
Long Wei
馃敆
|
Sat 1:00 a.m. - 1:30 a.m.
|
Poster Session 1
(
Poster
)
>
|
馃敆
|
Sat 1:30 a.m. - 2:00 a.m.
|
Invited Talk 3
(
Invited Talk
)
>
SlidesLive Video
|
Paula Harder
馃敆
|
Sat 2:00 a.m. - 2:15 a.m.
|
Contributed Talk 2
(
Contributed Talk
)
>
link
SlidesLive Video
|
Moshe Eliasof 路 Eldad Haber 路 Eran Treister 路 Carola-Bibiane Sch枚nlieb
馃敆
|
Sat 2:15 a.m. - 2:45 a.m.
|
Invited Talk 4
(
Invited Talk
)
>
SlidesLive Video
|
Chris Rackauckas
馃敆
|
Sat 2:45 a.m. - 3:15 a.m.
|
Invited Talk 5
(
Invited Talk
)
>
SlidesLive Video
|
Meire Fortunato
馃敆
|
Sat 3:15 a.m. - 3:45 a.m.
|
Poster Session 2
|
馃敆
|
Sat 3:45 a.m. - 4:45 a.m.
|
Break
(
Lunch
)
>
|
馃敆
|
Sat 4:45 a.m. - 5:00 a.m.
|
Contributed Talk 3
(
Contributed Talk
)
>
link
SlidesLive Video
|
Miguel Liu-Schiaffini 路 Julius Berner 路 Boris Bonev 路 Thorsten Kurth 路 Kamyar Azizzadenesheli 路 anima anandkumar
馃敆
|
Sat 5:00 a.m. - 5:30 a.m.
|
Invited Talk 6
(
Invited Talk
)
>
SlidesLive Video
|
Alex Townsend
馃敆
|
Sat 5:30 a.m. - 6:15 a.m.
|
Panel Discussion
(
Panel Discussion
)
>
SlidesLive Video
|
Kevin Carlberg 路 Marta D'Elia 路 Shirley ho 路 Max Welling
馃敆
|
Sat 6:15 a.m. - 6:45 a.m.
|
Break
(
Coffee Break
)
>
|
馃敆
|
Sat 6:45 a.m. - 7:00 a.m.
|
Contributed Talk 4
(
Contributed Talk
)
>
link
SlidesLive Video
|
Shengchao Liu 路 weitao du 路 Yanjing Li 路 Zhuoxinran Li 路 Vignesh Bhethanabotla 路 Nakul Rampal 路 Omar Yaghi 路 Christian Borgs 路 anima anandkumar 路 Hongyu Guo
馃敆
|
Sat 7:00 a.m. - 7:30 a.m.
|
Invited Talk 7
(
Invited Talk
)
>
SlidesLive Video
|
Youngsoo Choi
馃敆
|
Sat 7:30 a.m. - 8:00 a.m.
|
Invited Talk 8
(
Invited Talk
)
>
SlidesLive Video
|
Steve Brunton
馃敆
|
Sat 8:00 a.m. - 8:00 a.m.
|
Closing Remarks
(
Closing
)
>
SlidesLive Video
|
馃敆
|
-
|
Application of gauge equivariant convolutional neural networks to learning a fixed point action for SU(3) gauge theory
(
Poster
)
>
link
|
Kieran Holland 路 Andreas Ipp 路 David M眉ller 路 Urs Wenger
馃敆
|
-
|
Physics-constrained DeepONet for Surrogate CFD models: a curved backward-facing step case
(
Poster
)
>
link
|
Anas Jnini 路 Harshinee Goordoyal 路 Sujal Dave 路 Artem Korobenko 路 Flavio Vella 路 Katharine Fraser
馃敆
|
-
|
Investigation of Latent Time-Scales in Neural ODE Surrogate Models
(
Poster
)
>
link
|
Ashish Nair 路 Shivam Barwey 路 Pinaki Pal 路 Romit Maulik
馃敆
|
-
|
Minimizing Structural Vibrations via Guided Diffusion Design Optimization
(
Poster
)
>
link
|
Jan van Delden 路 Julius Schultz 路 Christopher Blech 路 Sabine Langer 路 Timo L眉ddecke
馃敆
|
-
|
DOF: Accelerating High-order Differential Operators with Forward Propagation
(
Poster
)
>
link
|
Ruichen Li 路 Chuwei Wang 路 Haotian Ye 路 Di He 路 Liwei Wang
馃敆
|
-
|
PointSAGE: Mesh-independent superresolution approach to fluid flow predictions
(
Poster
)
>
link
|
Rajat sarkar 路 Sudhir Aripirala 路 Vishal Jadhav 路 Sagar Srinivas Sakhinana 路 Venkataramana Runkana
馃敆
|
-
|
Application of Neural Ordinary Differential Equations for Tokamak Plasma Dynamics Analysis
(
Poster
)
>
link
|
Zefang Liu 路 Weston Stacey
馃敆
|
-
|
Hierarchy-based Clifford Group Equivariant Message Passing Neural Networks
(
Poster
)
>
link
|
Takashi Maruyama 路 Francesco Alesiani
馃敆
|
-
|
XDDPM: EXPLAINABLE DENOISING DIFFUSION PROB- ABILISTIC MODEL FOR SCIENTIFIC MODELING
(
Poster
)
>
link
|
Qianru Zhang 路 Chenglei Yu 路 Yudong Yan 路 Xiangyu Kuang 路 Yi Ma 路 Yuansheng Cao 路 Siu Ming Yiu 路 Tailin Wu
馃敆
|
-
|
CLIFFORD NEURAL OPERATORS ON ATMOSPHERIC DATA INFLUENCED PARTIAL DIFFERENTIAL EQUATIONS
(
Poster
)
>
link
|
Sujit Roy 路 Wei Ji Leong 路 Rajat Shinde 路 Christopher Phillips 路 Kumar Ankur 路 Manil Maskey 路 Rahul Ramachandran
馃敆
|
-
|
Generative PDE Control
(
Poster
)
>
link
|
Long Wei 路 Peiyan Hu 路 Ruiqi Feng 路 Yixuan Du 路 Tao Zhang 路 Rui Wang 路 Yue Wang 路 Zhi-Ming Ma 路 Tailin Wu
馃敆
|
-
|
Targeted Reduction of Causal Models
(
Poster
)
>
link
|
Armin Keki膰 路 Bernhard Schoelkopf 路 michel besserve
馃敆
|
-
|
Consistency Matters: Neural ODE Parameters are Dependent on the Training Numerical Method
(
Poster
)
>
link
|
C. Coelho 路 M.Fernanda Costa 路 Lu铆s Ferr谩s
馃敆
|
-
|
FASTVPINNS: A FAST, VERSATILE AND ROBUST VARIATIONAL PINNS FRAMEWORK FOR FORWARD AND INVERSE PROBLEMS IN SCIENCE
(
Poster
)
>
link
|
Divij Ghose 路 Thivin Anandh 路 Sashikumaar Ganesan
馃敆
|
-
|
Mixture of Neural Operators: Incorporating Historical Information for Longer Rollouts
(
Poster
)
>
link
|
Harris Abdul Majid 路 Francesco Tudisco
馃敆
|
-
|
Neural SPH: Improved Neural Modeling of Lagrangian Fluid Dynamics
(
Poster
)
>
link
|
Artur Toshev 路 Jonas A Erbesdobler 路 Nikolaus Adams 路 Johannes Brandstetter
馃敆
|
-
|
Data-Driven Higher Order Differential Equations Inspired Graph Neural Networks
(
Poster
)
>
link
|
Moshe Eliasof 路 Eldad Haber 路 Eran Treister 路 Carola-Bibiane Sch枚nlieb
馃敆
|
-
|
Scaling Transformers for Skillful and Reliable Medium-range Weather Forecasting
(
Poster
)
>
link
|
Tung Nguyen 路 Rohan Shah 路 Hritik Bansal 路 Troy Arcomano 路 Sandeep Madireddy 路 Romit Maulik 路 Veerabhadra Kotamarthi 路 Ian Foster 路 Aditya Grover
馃敆
|
-
|
Vectorized Conditional Neural Fields: A Framework for Solving Time-dependent PDEs
(
Poster
)
>
link
|
Jan Hagnberger 路 Marimuthu Kalimuthu 路 Mathias Niepert
馃敆
|
-
|
MATHEMATICAL MODELING OF SPATIO-TEMPORAL DISEASE SPREADING USING PDES FOR MACHINE LEARNING
(
Poster
)
>
link
|
Jost Arndt 路 Jackie Ma
馃敆
|
-
|
Efficient GPU-Accelerated Global Optimization for Inverse Problems
(
Poster
)
>
link
|
Utkarsh Utkarsh 路 Vaibhav Dixit 路 Julian Samaroo 路 Avik Pal 路 Alan Edelman 路 Chris Rackauckas
馃敆
|
-
|
Ensemble learning for Physics Informed Neural Networks: a Gradient Boosting approach
(
Poster
)
>
link
|
Zhiwei Fang 路 Sifan Wang 路 Paris Perdikaris
馃敆
|
-
|
Physics-Informed Koopman Network for time-series prediction of dynamical systems
(
Poster
)
>
link
|
Yuying Liu 路 Aleksei Sholokhov 路 Hassan Mansour 路 Saleh Nabi
馃敆
|
-
|
Neural Context Flows for Learning Generalizable Dynamical Systems
(
Poster
)
>
link
|
Roussel Desmond Nzoyem 路 David Barton 路 Tom Deakin
馃敆
|
-
|
Hessian Reparametrization for Coarse-grained Energy Minimization
(
Poster
)
>
link
|
Nima Dehmamy 路 Csaba Both 路 Jeet Mohapatra 路 Subhro Das 路 Tommi Jaakkola
馃敆
|
-
|
A Novel ML Model for Numerical Simulations Leveraging Fourier Neural Operators
(
Poster
)
>
link
|
Ali Takbiri-Borujeni 路 Mohammad Kazemi 路 Sam Takbiri
馃敆
|
-
|
Uncertainty Quantification for Fourier Neural Operators
(
Poster
)
>
link
|
Tobias Weber 路 Emilia Magnani 路 Marvin Pf枚rtner 路 Philipp Hennig
馃敆
|
-
|
Comparing and Contrasting Deep Learning Weather Prediction Backbones on Navier-Stokes Dynamics
(
Poster
)
>
link
|
Matthias Karlbauer 路 Danielle Maddix 路 Abdul Fatir Ansari 路 Boran Han 路 Gaurav Gupta 路 Bernie Wang 路 Andrew Stuart 路 Michael W Mahoney
馃敆
|
-
|
Equivariant Neural Fields For Symmetry Preserving Continous PDE Forecasting
(
Poster
)
>
link
|
David Knigge 路 David Wessels 路 Riccardo Valperga 路 Samuele Papa 路 Efstratios Gavves 路 Erik Bekkers
馃敆
|
-
|
LEARN TO ADAPT PARAMETRIC SOLVERS UNDER INCOMPLETE PHYSICS
(
Poster
)
>
link
|
Armand Kassa茂 Koupa茂 路 Yuan Yin 路 patrick Gallinari
馃敆
|
-
|
Learning iterative algorithms to solve PDEs.
(
Poster
)
>
link
|
Lise Le Boudec 路 Emmanuel de B茅zenac 路 Louis Serrano 路 Yuan Yin 路 patrick Gallinari
馃敆
|
-
|
MultiSTOP: Solving Functional Equations with Reinforcement Learning
(
Poster
)
>
link
|
Alessandro Trenta 路 Davide Bacciu 路 Andrea Cossu 路 Pietro Ferrero
馃敆
|
-
|
Neural operators with localized integral and differential kernels
(
Poster
)
>
link
|
Miguel Liu-Schiaffini 路 Julius Berner 路 Boris Bonev 路 Thorsten Kurth 路 Kamyar Azizzadenesheli 路 anima anandkumar
馃敆
|
-
|
Optimizing Computationally-Intensive Simulations Using a Biologically-Inspired Acquisition Function and a Fourier Neural Operator Surrogate
(
Poster
)
>
link
|
John Lins 路 Wei Liu
馃敆
|
-
|
Approximating Family of Steep Traveling Wave Solutions to Fisher's Equation with PINNs
(
Poster
)
>
link
|
Franz M. Rohrhofer 路 Stefan Posch 路 Clemens G枚脽nitzer 路 Bernhard C Geiger
馃敆
|
-
|
Solving Poisson Equations using Neural Walk-on-Spheres
(
Poster
)
>
link
|
Hong Chul Nam 路 Julius Berner 路 anima anandkumar
馃敆
|
-
|
CONTINUOUS-TIME NEURAL NETWORKS FOR MODELING LINEAR DYNAMICAL SYSTEMS
(
Poster
)
>
link
|
Chinmay Datar 路 Adwait Datar 路 Felix Dietrich 路 Wil Schilders
馃敆
|
-
|
Joint Parameter and Parameterization Inference with Uncertainty Quantification Through Differentiable Programming
(
Poster
)
>
link
|
Yongquan Qu 路 Mohamed Aziz Bhouri 路 Pierre Gentine
馃敆
|
-
|
The conjugate kernel for efficient training of physics-informed deep operator networks
(
Poster
)
>
link
|
Amanda Howard 路 Saad Qadeer 路 Andrew Engel 路 Adam Tsou 路 Max Vargas 路 Tony Chiang 路 Panos Stinis
馃敆
|
-
|
Physics-Informed Machine Learning for Fluid Flow Prediction in Porous Media
(
Poster
)
>
link
|
Ali Takbiri-Borujeni 路 Mohammad Kazemi 路 Sam Takbiri
馃敆
|
-
|
Conformalized Physics-Informed Neural Networks
(
Poster
)
>
link
|
Lena Podina 路 Torabi Rad 路 Mohammad Kohandel
馃敆
|
-
|
Latent Diffusion Transformer with Local Neural Field as PDE Surrogate Model
(
Poster
)
>
link
|
Louis Serrano 路 Jean-No毛l Vittaut 路 patrick Gallinari
馃敆
|
-
|
On training Physics-Informed Neural Networks for Oscillating Problems
(
Poster
)
>
link
|
Martin Hofmann-Wellenhof 路 Alexander Fuchs 路 Franz Pernkopf
馃敆
|
-
|
Learning time-dependent PDE via graph neural networks and deep operator network for robust accuracy on irregular grids
(
Poster
)
>
link
|
Sung Woong Cho 路 JaeYong Lee 路 Hyung Ju Hwang
馃敆
|
-
|
Learning The Delay in Delay Differential Equations
(
Poster
)
>
link
|
Robert Stephany 路 Maria Oprea 路 Gabriella Torres Nothaft 路 Mark Walth 路 Arnaldo Rodriguez-Gonzalez 路 William Clark
馃敆
|
-
|
INTEGRAL PINNS FOR HYPERBOLIC CONSERVATION LAWS
(
Poster
)
>
link
|
Manvendra P. Rajvanshi 路 David Ketcheson
馃敆
|
-
|
Traversing Chemical Space with Latent Potential Flows
(
Poster
)
>
link
|
Guanghao Wei 路 Yining Huang 路 Chenru Duan 路 Yue Song 路 Yuanqi Du
馃敆
|
-
|
Neural Langevin-type Stochastic Differential Equations for Astronomical time series Classification under Irregular Observations
(
Poster
)
>
link
|
YongKyung Oh 路 Seungsu Kam 路 Dongyoung Lim 路 Sungil Kim
馃敆
|
-
|
Efficient Fourier Neural Operators by Group Convolution and Channel Shuffling
(
Poster
)
>
link
|
Myungjoon Kim 路 Junhyung Park 路 Jonghwa Shin
馃敆
|
-
|
A PHYSICS-INFORMED NEURAL NETWORK FOR COUPLED CALCIUM DYNAMICS IN A CABLE NEURON
(
Poster
)
>
link
|
Zachary Miksis 路 Gillian Queisser
馃敆
|
-
|
Investigation of Numerical Diffusion in Aerodynamic Flow Simulations with Physics Informed Neural Networks
(
Poster
)
>
link
|
Alok Warey 路 Taeyoung Han 路 Shailendra Kaushik
馃敆
|
-
|
Heteroscedastic uncertainty quantification in Physics-Informed Neural Networks
(
Poster
)
>
link
|
Olivier Claessen 路 Yuliya Shapovalova 路 Tom Heskes
馃敆
|
-
|
GA-ReLU: an activation function for Geometric Algebra Networks applied to 2D Navier-Stokes PDEs
(
Poster
)
>
link
|
Alberto Pepe 路 Sven Buchholz 路 Joan Lasenby
馃敆
|
-
|
CHAROT: Robustly controlling chaotic PDEs with partial observations
(
Poster
)
>
link
|
Max Weissenbacher 路 Anastasia Borovykh 路 Georgios Rigas
馃敆
|
-
|
RBF-PINN: NON-FOURIER POSITIONAL EMBEDDING IN PHYSICS-INFORMED NEURAL NETWORKS
(
Poster
)
>
link
|
Chengxi Zeng 路 Tilo Burghardt 路 Alberto Gambaruto
馃敆
|
-
|
Optimal Experimental Design for Bayesian Inverse Problems using Energy-Based Couplings
(
Poster
)
>
link
|
Paula Cordero Encinar 路 Tobias Schr枚der 路 Andrew Duncan
馃敆
|
-
|
Learning Stochastic Dynamics from Data
(
Poster
)
>
link
|
Ziheng Guo 路 Ming Zhong 路 Igor Cialenco
馃敆
|
-
|
Physics-informed neural networks for sampling
(
Poster
)
>
link
|
Jingtong Sun 路 Julius Berner 路 Kamyar Azizzadenesheli 路 anima anandkumar
馃敆
|
-
|
Zebra: a continuous generative transformer for solving parametric PDEs
(
Poster
)
>
link
|
Louis Serrano 路 Pierre ERBACHER 路 Jean-No毛l Vittaut 路 patrick Gallinari
馃敆
|
-
|
Multi-Lattice Sampling of Quantum Field Theories via Neural Operator-based Flows
(
Poster
)
>
link
|
B谩lint M谩t茅 路 Fran莽ois Fleuret
馃敆
|
-
|
Verlet Flows: Exact-Likelihood Integrators for Flow-Based Generative Models
(
Poster
)
>
link
|
Ezra Erives 路 Bowen Jing 路 Tommi Jaakkola
馃敆
|
-
|
Adaptive Multilevel Neural Networks for Parametric PDEs with Error Estimation
(
Poster
)
>
link
|
Janina Enrica Sch眉tte 路 Martin Eigel
馃敆
|
-
|
Estimating field parameters from multiphysics governing equations with scarce data
(
Poster
)
>
link
|
Xuyang Li 路 Masmoudi 路 Nizar Lajnef 路 Vishnu Boddeti
馃敆
|
-
|
Galerkin meets Laplace: Fast uncertainty estimation in neural PDEs
(
Poster
)
>
link
|
Christian Jimenez 路 Antonio Vergari 路 Aretha Teckentrup 路 Konstantinos Zygalakis
馃敆
|
-
|
Multigrid-Augmented Deep Learning Preconditioners for the Helmholtz Equation using Compact Implicit Layers
(
Poster
)
>
link
|
Ido Ben-Yair 路 Bar Lerer 路 Eran Treister
馃敆
|
-
|
PDEformer: Towards a Foundation Model for One-Dimensional Partial Differential Equations
(
Poster
)
>
link
|
Zhanhong Ye 路 Xiang Huang 路 Leheng Chen 路 Hongsheng Liu 路 Zidong Wang 路 Bin Dong
馃敆
|
-
|
APPLICATIONS OF FOURIER NEURAL OPERATORS IN THE IFMIFDONES ACCELERATOR
(
Poster
)
>
link
|
Guillermo Rodr铆guez-Llorente 路 Galo Romero 路 Roberto G贸mez-Espinosa Mart铆n
馃敆
|
-
|
Extension of Physics-informed Neural Networks to Solving Parameterized PDEs
(
Poster
)
>
link
|
Woojin Cho 路 Minju Jo 路 Haksoo Lim 路 Kookjin Lee 路 Dongeun Lee 路 Sanghyun Hong 路 Noseong Park
馃敆
|
-
|
On Representing Electronic Wave Functions with Sign Equivariant Neural Networks
(
Poster
)
>
link
|
Nicholas Gao 路 Stephan G眉nnemann
馃敆
|
-
|
Accelerating Neural Differential Equations for Irregularly-Sampled Dynamical Systems Using Variational Formulation
(
Poster
)
>
link
|
Hongjue Zhao 路 Yuchen Wang 路 Hairong Qi 路 Jiajia Li 路 Lui Sha 路 Han Zhao 路 Huajie Shao
馃敆
|
-
|
Comparing PINNs Across Frameworks: JAX, TensorFlow, and PyTorch
(
Poster
)
>
link
|
Reza Akbarian Bafghi 路 Maziar Raissi
馃敆
|
-
|
PINA: a PyTorch Framework for Solving Differential Equations by Deep Learning for Research and Production Environments
(
Poster
)
>
link
|
Dario Coscia 路 Nicola Demo 路 Gianluigi Rozza
馃敆
|
-
|
AutoBasisEncoder: Pre-trained Neural Field Basis via Autoencoding for Operator Learning
(
Poster
)
>
link
|
Thomas Wang 路 Nicolas Baskiotis 路 patrick Gallinari
馃敆
|
-
|
JAX-SPH: A Differentiable Smoothed Particle Hydrodynamics Framework
(
Poster
)
>
link
|
Artur Toshev 路 Harish Ramachandran 路 Jonas A Erbesdobler 路 Gianluca Galletti 路 Johannes Brandstetter 路 Nikolaus Adams
馃敆
|
-
|
Data-driven Multi-Fidelity Modelling for Time-dependent Partial Differential Equations using Convolutional Neural Networks
(
Poster
)
>
link
|
Freja Terp Petersen 路 Allan Engsig-Karup
馃敆
|
-
|
INVESTIGATING THE EFFECTS OF PLANT DIVERSITY ON SOIL THERMAL DIFFUSIVITY USING PHYSICS- INFORMED NEURAL NETWORKS
(
Poster
)
>
link
|
Gideon Stein 路 Sai Karthikeya Vemuri 路 Yuanyuan Huang 路 Anne Ebeling 路 Nico Eisenhauer 路 Maha Shadaydeh 路 Joachim Denzler
馃敆
|
-
|
Extending Deep Learning Emulation Across Parameter Regimes to Assess Stochastically Driven Spontaneous Transition Events
(
Poster
)
>
link
|
Ira Shokar 路 Peter Haynes 路 Rich Kerswell
馃敆
|
-
|
Semiparametric Inference and Equation Discovery with the Bayesian Machine Scientist
(
Poster
)
>
link
|
Kai-Hendrik Cohrs 路 Gherardo Varando 路 Roger Guimer脿 路 Marta Pardo 路 Gustau Camps-Valls
馃敆
|
-
|
Learning a vector field from snapshots of unidentified particles rather than particle trajectories
(
Poster
)
>
link
|
Yunyi Shen 路 Renato Berlinghieri 路 Tamara Broderick
馃敆
|
-
|
Neural Parameter Regression for Explicit Representations of PDE Solution Operators
(
Poster
)
>
link
|
Konrad Mundinger 路 Max Zimmer 路 Sebastian Pokutta
馃敆
|
-
|
Integrating Kernel Methods and Deep Neural Networks for Solving PDEs
(
Poster
)
>
link
|
Carlos Mora 路 Amin Yousefpour 路 Shirin Hosseinmardi 路 Ramin Bostanabad
馃敆
|
-
|
A Multi-Grained Symmetric Differential Equation Model for Learning Protein-Ligand Binding Dynamics
(
Poster
)
>
link
|
11 presenters
Shengchao Liu 路 weitao du 路 Yanjing Li 路 Zhuoxinran Li 路 Vignesh Bhethanabotla 路 Nakul Rampal 路 Omar Yaghi 路 Christian Borgs 路 anima anandkumar 路 Hongyu Guo 路 Jennifer Chayes
馃敆
|
-
|
Neural ODE for Multi-channel Attribution
(
Poster
)
>
link
|
YUDI ZHANG 路 Oshry Ben-Harush 路 Xin Liang 路 Siyu Zhu
馃敆
|
-
|
Guided Autoregressive Diffusion Models with Applications to PDE Simulation
(
Poster
)
>
link
|
Federico Bergamin 路 Cristiana Diaconu 路 Aliaksandra Shysheya 路 Paris Perdikaris 路 Jos茅 Miguel Hern谩ndez Lobato 路 Richard E Turner 路 Emile Mathieu
馃敆
|
-
|
TUCKER DECOMPOSITION FOR INTERPRETABLE NEU- RAL ORDINARY DIFFERENTIAL EQUATIONS
(
Poster
)
>
link
|
Dimitrios Halatsis 路 Grigorios Chrysos 路 Joao Pereira 路 Michael Alummoottil
馃敆
|
-
|
Mechanistic Neural Networks for Scientific Machine Learning
(
Poster
)
>
link
|
Adeel Pervez 路 Francesco Locatello 路 Efstratios Gavves
馃敆
|
-
|
Data-Efficient Operator Learning via Unsupervised Pretraining and In-Context Learning
(
Poster
)
>
link
|
Wuyang Chen 路 Jialin Song 路 Pu Ren 路 Shashank Subramanian 路 Dmitriy Morozov 路 Michael W Mahoney
馃敆
|