Oral Session
Oral Session 2B
Moderators: Shizhe Chen · Yujun Cai
MLE-bench: Evaluating Machine Learning Agents on Machine Learning Engineering
Jun Shern Chan · Neil Chowdhury · Oliver Jaffe · James Aung · Dane Sherburn · Evan Mays · Giulio Starace · Kevin Liu · Leon Maksin · Tejal Patwardhan · Aleksander Madry · Lilian Weng
We introduce MLE-bench, a benchmark for measuring how well AI agents perform at machine learning engineering. To this end, we curate 75 ML engineering-related competitions from Kaggle, creating a diverse set of challenging tasks that test real-world ML engineering skills such as training models, preparing datasets, and running experiments. We establish human baselines for each competition using Kaggle's publicly available leaderboards. We use open-source agent scaffolds to evaluate several frontier language models on our benchmark, finding that the best-performing setup — OpenAI's o1-preview with AIDE scaffolding — achieves at least the level of a Kaggle bronze medal in 16.9% of competitions. In addition to our main results, we investigate various forms of resource-scaling for AI agents and the impact of contamination from pre-training. We open-source our benchmark code https://github.com/openai/mle-bench to facilitate future research in understanding the ML engineering capabilities of AI agents.
MMQA: Evaluating LLMs with Multi-Table Multi-Hop Complex Questions
Jian Wu · Linyi Yang · Dongyuan Li · Yuliang Ji · Manabu Okumura · Yue Zhang
While large language models (LLMs) have made strides in understanding tabular data, current tabular evaluation benchmarks, such as WikiTableQuestions and WikiSQL, are focus on single-table scenarios, which cannot necessarily reflect the complexity of real-world applications. To bridge this gap, we present a \textbf{M}ulti-table and Multi-hop Question Answering (MMQA) dataset to assess LLMs' understanding and reasoning capabilities in handling multi-table tasks. The MMQA dataset demands that models perform multiple inferences by drawing evidence from various tables, which are designed to be connected with each other and require models to identify and utilize relationships such as foreign and primary keys. Then, we introduce a comprehensive evaluation framework that tailors to assess LLMs' capabilities in several aspects including Multi-Table Retrieval, Text-to-SQL Generation, Multi-Table QA, Primary Key Selection, and Foreign Key Selection. Finally, we propose a novel multi-table retrieval method that achieves state-of-the-art (SOTA) performance on the MMQA dataset compared to several strong baselines. Our experiment results reveal that, compared with human performance, both open-source and commercial LLMs leave significant performance room for improvements in multi-table understanding and reasoning tasks. We believe that the MMQA benchmark will enhance and facilitate LLMs' multi-table capabilities in real-world scenarios.
MMIE: Massive Multimodal Interleaved Comprehension Benchmark for Large Vision-Language Models
Peng Xia · Siwei Han · Shi Qiu · Yiyang Zhou · Zhaoyang Wang · Wenhao Zheng · Zhaorun Chen · Chenhang Cui · Mingyu Ding · Linjie Li · Lijuan Wang · Huaxiu Yao
Interleaved multimodal comprehension and generation, enabling models to produce and interpret both images and text in arbitrary sequences, have become a pivotal area in multimodal learning. Despite significant advancements, the evaluation of this capability remains insufficient. Existing benchmarks suffer from limitations in data scale, scope, and evaluation depth, while current evaluation metrics are often costly or biased, lacking in reliability for practical applications. To address these challenges, we introduce MMIE, a large-scale knowledge-intensive benchmark for evaluating interleaved multimodal comprehension and generation in Large Vision-Language Models (LVLMs). MMIE comprises 20K meticulously curated multimodal queries, spanning 3 categories, 12 fields, and 102 subfields, including mathematics, coding, physics, literature, health, and arts. It supports both interleaved inputs and outputs, offering a mix of multiple-choice and open-ended question formats to evaluate diverse competencies. Moreover, we propose a reliable automated evaluation metric, leveraging a scoring model fine-tuned with human-annotated data and systematic evaluation criteria, aimed at reducing bias and improving evaluation accuracy. Extensive experiments demonstrate the effectiveness of our benchmark and metrics in providing a comprehensive evaluation of interleaved LVLMs. Specifically, we evaluate eight LVLMs, revealing that even the best models show significant room for improvement, with most achieving only moderate results. We believe MMIE will drive further advancements in the development of interleaved LVLMs.
Dynamic Multimodal Evaluation with Flexible Complexity by Vision-Language Bootstrapping
Yue Yang · Shuibo Zhang · Kaipeng Zhang · Yi Bin · Yu Wang · Ping Luo · Wenqi Shao
Large Vision-Language Models (LVLMs) have demonstrated remarkable capabilities across multimodal tasks such as visual perception and reasoning, leading to good performance on various multimodal evaluation benchmarks. However, these benchmarks keep a static nature and overlap with the pre-training data, resulting in fixed complexity constraints and data contamination issues. This raises the concern regarding the validity of the evaluation. To address these two challenges, we introduce a dynamic multimodal evaluation protocol called Vision-Language Bootstrapping (VLB). VLB provides a robust and comprehensive assessment for LVLMs with reduced data contamination and flexible complexity. To this end, VLB dynamically generates new visual question-answering samples through a multimodal bootstrapping module that modifies both images and language, while ensuring that newly generated samples remain consistent with the original ones by a judge module. By composing various bootstrapping strategies, VLB offers dynamic variants of existing benchmarks with diverse complexities, enabling the evaluation to co-evolve with the ever-evolving capabilities of LVLMs. Extensive experimental results across multiple benchmarks, including SEEDBench, MMBench, and MME, show that VLB significantly reduces data contamination and exposes performance limitations of LVLMs.
PathGen-1.6M: 1.6 Million Pathology Image-text Pairs Generation through Multi-agent Collaboration
Yuxuan Sun · Yunlong Zhang · Yixuan Si · Chenglu Zhu · Kai Zhang · Zhongyi Shui · Jingxiong Li · Xuan Gong · XINHENG LYU · Tao Lin · Lin Yang
Vision Language Models (VLMs) like CLIP have attracted substantial attention in pathology, serving as backbones for applications such as zero-shot image classification and Whole Slide Image (WSI) analysis. Additionally, they can function as vision encoders when combined with large language models (LLMs) to support broader capabilities. Current efforts to train pathology VLMs rely on pathology image-text pairs from platforms like PubMed, YouTube, and Twitter, which provide limited, unscalable data with generally suboptimal image quality. In this work, we leverage large-scale WSI datasets like TCGA to extract numerous high-quality image patches. We then train a large multimodal model (LMM) to generate captions for extracted images, creating PathGen-1.6M, a dataset containing 1.6 million high-quality image-caption pairs. Our approach involves multiple agent models collaborating to extract representative WSI patches, generating and refining captions to obtain high-quality image-text pairs. Extensive experiments show that integrating these generated pairs with existing datasets to train a pathology-specific CLIP model, PathGen-CLIP, significantly enhances its ability to analyze pathological images, with substantial improvements across nine pathology-related zero-shot image classification tasks and three whole-slide image tasks. Furthermore, we construct 200K instruction-tuning data based on PathGen-1.6M and integrate PathGen-CLIP with the Vicuna LLM to create more powerful multimodal models through instruction tuning. Overall, we provide a scalable pathway for high-quality data generation in pathology, paving the way for next-generation general pathology models. Our dataset, code, and model are open-access at https://github.com/PathFoundation/PathGen-1.6M.
Two Effects, One Trigger: On the Modality Gap, Object Bias, and Information Imbalance in Contrastive Vision-Language Models
Simon Schrodi · David T. Hoffmann · Max Argus · Volker Fischer · Thomas Brox
Contrastive vision-language models (VLMs), like CLIP, have gained popularity for their versatile applicability to various downstream tasks. Despite their successes in some tasks, like zero-shot object recognition, they perform surprisingly poor on other tasks, like attribute recognition. Previous work has attributed these challenges to the modality gap, a separation of image and text in the shared representation space, and to a bias towards objects over other factors, such as attributes. In this analysis paper, we investigate both phenomena thoroughly. We evaluated off-the-shelf VLMs and while the gap's influence on performance is typically overshadowed by other factors, we find indications that closing the gap indeed leads to improvements. Moreover, we find that, contrary to intuition, only few embedding dimensions drive the gap and that the embedding spaces are differently organized. To allow for a clean study of object bias, we introduce a definition and a corresponding measure of it. Equipped with this tool, we find that object bias does not lead to worse performance on other concepts, such as attributes per se. However, why do both phenomena, modality gap and object bias, emerge in the first place? To answer this fundamental question and uncover some of the inner workings of contrastive VLMs, we conducted experiments that allowed us to control the amount of shared information between the modalities. These experiments revealed that the driving factor behind both the modality gap and the object bias, is an information imbalance between images and captions, and unveiled an intriguing connection between the modality gap and entropy of the logits.