Skip to yearly menu bar Skip to main content


(25 events)   Timezone:  
Toggle Poster Visibility
Break
Mon May 06 07:00 AM -- 06:30 PM (PDT)
Registration Desk Open
Invited Talk
Mon May 06 07:00 AM -- 07:45 AM (PDT) @ Great Hall AD
Highlights of Recent Developments in Algorithmic Fairness
Cynthia Dwork
Oral
Mon May 06 07:45 AM -- 08:00 AM (PDT) @ Great Hall AD
Generating High Fidelity Images with Subscale Pixel Networks and Multidimensional Upscaling
Jacob Menick · Nal Kalchbrenner
Workshop
Mon May 06 07:45 AM -- 04:30 PM (PDT) @ Room R01
The 2nd Learning from Limited Labeled Data (LLD) Workshop: Representation Learning for Weak Supervision and Beyond
Isabelle Augenstein · Stephen Bach · Matthew Blaschko · Eugene Belilovsky · Edouard Oyallon · Anthony Platanios · Alex Ratner · Christopher Re · Xiang Ren · Paroma Varma
Workshop
Mon May 06 07:45 AM -- 11:00 AM (PDT) @ Room R02
Deep Reinforcement Learning Meets Structured Prediction
Chen Liang · Ni Lao · Wang Ling · Zita Marinho · Yuandong Tian · Lu Wang · Jason D Williams · Audrey Durand · Andre Martins
Workshop
Mon May 06 07:45 AM -- 04:30 PM (PDT) @ Room R03
Debugging Machine Learning Models
Julius Adebayo · Himabindu Lakkaraju · Sarah Tan · Rich Caruana · Jacob Steinhardt · D. Sculley
Workshop
Mon May 06 07:45 AM -- 04:30 PM (PDT) @ Room R04
Structure & Priors in Reinforcement Learning (SPiRL)
Pierre-Luc Bacon · Marc Deisenroth · Chelsea Finn · Erin Grant · Thomas L Griffiths · Abhishek Gupta · Nicolas Heess · Michael L. Littman · Junhyuk Oh
Workshop
Mon May 06 07:45 AM -- 04:30 PM (PDT) @ Room R05
AI for Social Good
Margaux Luck · Myriam Cote · Kris Sankaran · Sean McGregor · Virgile Sylvain · Jonnie Penn · Geneviève Boucher · Tristan Sylvain · Rayid Ghani · Yoshua Bengio · Kentaro Toyama
Workshop
Mon May 06 07:45 AM -- 04:30 PM (PDT) @ Room R06
Safe Machine Learning: Specification, Robustness, and Assurance
Silvia Chiappa · Victoria Krakovna · Adrià Garriga-Alonso · Andrew Trask · Jonathan Uesato · Christina Heinze-Deml · Ray Jiang · Adrian Weller
Workshop
Mon May 06 07:45 AM -- 04:30 PM (PDT) @ Room R07
Representation Learning on Graphs and Manifolds
William Hamilton · Frederic Sala · Peter Battaglia · Joan Bruna · Thomas Kipf · Yujia Li · Razvan Pascanu · Adriana Romero · Petar Veličković · Marinka Zitnik · Maximilian Nickel · Beliz Gunel · Albert Gu · Christopher Re
Workshop
Mon May 06 07:45 AM -- 04:30 PM (PDT) @ Room R09
Task-Agnostic Reinforcement Learning (TARL)
Danijar Hafner · Deepak Pathak · Frederik Ebert · Marc G Bellemare · Raia Hadsell · Rowan McAllister · Amy Zhang · Joelle Pineau · Ahmed Touati · Roberto Calandra
Workshop
Mon May 06 07:45 AM -- 04:30 PM (PDT) @ Room R08
Reproducibility in Machine Learning
Nan Rosemary Ke · Alex Lamb · Anirudh Goyal · OLEXA Ivan BILANIUK · Aaron Courville · Yoshua Bengio
Oral
Mon May 06 08:00 AM -- 08:15 AM (PDT) @ Great Hall AD
BA-Net: Dense Bundle Adjustment Networks
Chengzhou Tang · Ping Tan
Oral
Mon May 06 08:15 AM -- 08:30 AM (PDT) @ Great Hall AD
Large Scale GAN Training for High Fidelity Natural Image Synthesis
Andrew Brock · Jeff Donahue · Karen Simonyan
Break
Mon May 06 08:45 AM -- 09:00 AM (PDT) @ Great Hall AD
Opening Remarks
Break
Mon May 06 10:30 AM -- 11:00 AM (PDT) @ Hall B-1
Coffee Break
Invited Talk
Mon May 06 12:30 PM -- 01:15 PM (PDT) @ Great Hall AD
Learning Representations Using Causal Invariance
Leon Bottou
Break
Mon May 06 01:00 PM -- 02:30 PM (PDT) @ on your own
Lunch - on your own
Oral
Mon May 06 01:15 PM -- 01:30 PM (PDT) @ Great Hall AD
On Random Deep Weight-Tied Autoencoders: Exact Asymptotic Analysis, Phase Transitions, and Implications to Training
Ping Li · Phan-Minh Nguyen
Workshop
Mon May 06 01:15 PM -- 04:30 PM (PDT) @ Room R02
Deep Generative Models for Highly Structured Data
Adji Bousso Dieng · Yoon Kim · Siva Reddy · Kyunghyun Cho · Chris Dyer · David Blei · Phil Blunsom
Oral
Mon May 06 01:30 PM -- 01:45 PM (PDT) @ Great Hall AD
How Powerful are Graph Neural Networks?
Keyulu Xu · Weihua Hu · Jure Leskovec · Stefanie Jegelka
Oral
Mon May 06 01:45 PM -- 02:00 PM (PDT) @ Great Hall AD
The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks
Jonathan Frankle · Michael Carbin
Break
Mon May 06 04:00 PM -- 04:30 PM (PDT) @ Hall B-1
Coffee Break
Break
Mon May 06 06:30 PM -- 07:30 PM (PDT) @ Great Hall Pre-Function, Hall B-1
Opening Reception
Break
Mon May 06 07:00 PM -- 07:30 PM (PDT) @ Rivergate Room
Newcomers Reception