Abstract:
Until about 2013, most researchers studying machine learning for artificial intelligence all worked on a common goal: get machine learning to work for AI-scale tasks. Now that supervised learning works, there is a Cambrian explosion of new research directions: making machine learning secure, making machine learning private, getting machine learning to work for new tasks, reducing the dependence on large amounts of labeled data, and so on. In this talk I survey how adversarial techniques in machine learning are involved in several of these new research frontiers.
Live content is unavailable. Log in and register to view live content