Skip to yearly menu bar Skip to main content


Poster

Adversarial Reprogramming of Neural Networks

Gamaleldin Elsayed · Ian Goodfellow · Jascha Sohl-Dickstein

Great Hall BC #63

Keywords: [ machine learning security ] [ neural networks ] [ adversarial ]


Abstract:

Deep neural networks are susceptible to adversarial attacks. In computer vision, well-crafted perturbations to images can cause neural networks to make mistakes such as confusing a cat with a computer. Previous adversarial attacks have been designed to degrade performance of models or cause machine learning models to produce specific outputs chosen ahead of time by the attacker. We introduce attacks that instead reprogram the target model to perform a task chosen by the attacker without the attacker needing to specify or compute the desired output for each test-time input. This attack finds a single adversarial perturbation, that can be added to all test-time inputs to a machine learning model in order to cause the model to perform a task chosen by the adversary—even if the model was not trained to do this task. These perturbations can thus be considered a program for the new task. We demonstrate adversarial reprogramming on six ImageNet classification models, repurposing these models to perform a counting task, as well as classification tasks: classification of MNIST and CIFAR-10 examples presented as inputs to the ImageNet model.

Live content is unavailable. Log in and register to view live content