Skip to yearly menu bar Skip to main content


Poster

DialogWAE: Multimodal Response Generation with Conditional Wasserstein Auto-Encoder

Xiaodong Gu · Kyunghyun Cho · Jung-Woo Ha · Sunghun Kim

Great Hall BC #77

Keywords: [ gan ] [ vae ] [ dialogue ] [ wae ] [ chatbot ]


Abstract:

Variational autoencoders (VAEs) have shown a promise in data-driven conversation modeling. However, most VAE conversation models match the approximate posterior distribution over the latent variables to a simple prior such as standard normal distribution, thereby restricting the generated responses to a relatively simple (e.g., single-modal) scope. In this paper, we propose DialogWAE, a conditional Wasserstein autoencoder (WAE) specially designed for dialogue modeling. Unlike VAEs that impose a simple distribution over the latent variables, DialogWAE models the distribution of data by training a GAN within the latent variable space. Specifically, our model samples from the prior and posterior distributions over the latent variables by transforming context-dependent random noise using neural networks and minimizes the Wasserstein distance between the two distributions. We further develop a Gaussian mixture prior network to enrich the latent space. Experiments on two popular datasets show that DialogWAE outperforms the state-of-the-art approaches in generating more coherent, informative and diverse responses.

Live content is unavailable. Log in and register to view live content