Poster
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
Hsin-Yuan Huang · Eunsol Choi · Wen-tau Yih
Great Hall BC #15
Keywords: [ deep learning ] [ natural language processing ] [ machine comprehension ] [ conversational agent ]
Conversational machine comprehension requires a deep understanding of the conversation history. To enable traditional, single-turn models to encode the history comprehensively, we introduce Flow, a mechanism that can incorporate intermediate representations generated during the process of answering previous questions, through an alternating parallel processing structure. Compared to shallow approaches that concatenate previous questions/answers as input, Flow integrates the latent semantics of the conversation history more deeply. Our model, FlowQA, shows superior performance on two recently proposed conversational challenges (+7.2% F1 on CoQA and +4.0% on QuAC). The effectiveness of Flow also shows in other tasks. By reducing sequential instruction understanding to conversational machine comprehension, FlowQA outperforms the best models on all three domains in SCONE, with +1.8% to +4.4% improvement in accuracy.
Live content is unavailable. Log in and register to view live content