Skip to yearly menu bar Skip to main content


Poster

Boosting Robustness Certification of Neural Networks

Gagandeep Singh · Timon Gehr · Markus PĆ¼schel · Martin Vechev

Great Hall BC #26

Keywords: [ adversarial attacks ] [ robustness certification ] [ abstract interpretation ] [ milp solvers ] [ verification of neural networks ]


Abstract:

We present a novel approach for the certification of neural networks against adversarial perturbations which combines scalable overapproximation methods with precise (mixed integer) linear programming. This results in significantly better precision than state-of-the-art verifiers on challenging feedforward and convolutional neural networks with piecewise linear activation functions.

Live content is unavailable. Log in and register to view live content