Skip to yearly menu bar Skip to main content


Poster

Learning Two-layer Neural Networks with Symmetric Inputs

Rong Ge · Rohith Kuditipudi · Zhize Li · Xiang Wang

Great Hall BC #37

Keywords: [ optimization ] [ neural network ] [ symmetric inputs ] [ moment-of-moments ]


Abstract:

We give a new algorithm for learning a two-layer neural network under a very general class of input distributions. Assuming there is a ground-truth two-layer network y = A \sigma(Wx) + \xi, where A, W are weight matrices, \xi represents noise, and the number of neurons in the hidden layer is no larger than the input or output, our algorithm is guaranteed to recover the parameters A, W of the ground-truth network. The only requirement on the input x is that it is symmetric, which still allows highly complicated and structured input.

Our algorithm is based on the method-of-moments framework and extends several results in tensor decompositions. We use spectral algorithms to avoid the complicated non-convex optimization in learning neural networks. Experiments show that our algorithm can robustly learn the ground-truth neural network with a small number of samples for many symmetric input distributions.

Live content is unavailable. Log in and register to view live content