Skip to yearly menu bar Skip to main content


Search All 2019 Events
 

114 Results

<<   <   Page 2 of 10   >   >>
Poster
Wed 9:00 Automatically Composing Representation Transformations as a Means for Generalization
Michael Chang · Abhishek Gupta · Sergey Levine · Thomas L Griffiths
Poster
Wed 14:30 Critical Learning Periods in Deep Networks
Alessandro Achille · Matteo Rovere · Stefano Soatto
Poster
Wed 14:30 Aggregated Momentum: Stability Through Passive Damping
James Lucas · Shengyang Sun · Richard Zemel · Roger Grosse
Poster
Thu 14:30 Learning from Positive and Unlabeled Data with a Selection Bias
Masahiro Kato · Takeshi Teshima · Junya Honda
Poster
Tue 14:30 Towards the first adversarially robust neural network model on MNIST
Lukas Schott · Jonas Rauber · Matthias Bethge · Wieland Brendel
Poster
Wed 14:30 Deep Lagrangian Networks: Using Physics as Model Prior for Deep Learning
Michael Lutter · Christian Ritter · Jan Peters
Poster
Wed 14:30 The role of over-parametrization in generalization of neural networks
Behnam Neyshabur · Zhiyuan Li · Srinadh Bhojanapalli · Yann LeCun · Nathan Srebro
Poster
Wed 14:30 An analytic theory of generalization dynamics and transfer learning in deep linear networks
Andrew Lampinen · Surya Ganguli
Poster
Wed 9:00 Optimal Completion Distillation for Sequence Learning
Sara Sabour · William Chan · Mohammad Norouzi
Poster
Wed 9:00 NADPEx: An on-policy temporally consistent exploration method for deep reinforcement learning
Sirui Xie · Junning Huang · Lanxin Lei · Chunxiao Liu · Zheng Ma · Wei Zhang · Liang Lin
Poster
Tue 9:00 Approximating CNNs with Bag-of-local-Features models works surprisingly well on ImageNet
Wieland Brendel · Matthias Bethge
Poster
Wed 14:30 Quasi-hyperbolic momentum and Adam for deep learning
Jerry Ma · Denis Yarats