Skip to yearly menu bar Skip to main content


Search All 2019 Events
 

11 Results

<<   <   Page 1 of 1   >>   >
Poster
Thu 9:00 Stable Recurrent Models
John Miller · Moritz Hardt
Poster
Wed 14:30 Gradient descent aligns the layers of deep linear networks
Ziwei Ji · Matus Telgarsky
Poster
Wed 14:30 A Convergence Analysis of Gradient Descent for Deep Linear Neural Networks
Sanjeev Arora · Nadav Cohen · Noah Golowich · Wei Hu
Poster
Wed 14:30 Stochastic Gradient/Mirror Descent: Minimax Optimality and Implicit Regularization
Navid Azizan · Babak Hassibi
Poster
Wed 14:30 Gradient Descent Provably Optimizes Over-parameterized Neural Networks
Simon Du · Xiyu Zhai · Barnabás Póczos · Aarti Singh
Poster
Wed 14:30 Preconditioner on Matrix Lie Group for SGD
XI-LIN LI
Poster
Wed 14:30 Local SGD Converges Fast and Communicates Little
Sebastian Stich
Poster
Tue 9:00 Neural network gradient-based learning of black-box function interfaces
Alon Jacovi · guy hadash · Einat Kermany · Boaz Carmeli · Ofer Lavi · George M. Kour · Jonathan Berant
Poster
Wed 14:30 ANYTIME MINIBATCH: EXPLOITING STRAGGLERS IN ONLINE DISTRIBUTED OPTIMIZATION
Nuwan Ferdinand · Haider Al-Lawati · Stark Draper · Matthew Nokleby
Poster
Wed 14:30 Fluctuation-dissipation relations for stochastic gradient descent
Sho Yaida
Poster
Wed 14:30 Optimistic mirror descent in saddle-point problems: Going the extra (gradient) mile
Panayotis Mertikopoulos · Bruno Lecouat · Houssam Zenati · Chuan-Sheng Foo · Vijay Chandrasekhar · Georgios Piliouras