Skip to yearly menu bar Skip to main content


Search All 2019 Events
 

13 Results

<<   <   Page 1 of 2   >   >>
Poster
Wed 14:30 Caveats for information bottleneck in deterministic scenarios
Artemy Kolchinsky · Brendan D Tracey · Steven Van Kuyk
Poster
Wed 14:30 Learning to Make Analogies by Contrasting Abstract Relational Structure
Felix Hill · Adam Santoro · David Barrett · Ari Morcos · Timothy Lillicrap
Poster
Wed 14:30 Max-MIG: an Information Theoretic Approach for Joint Learning from Crowds
Peng Cao · Yilun Xu · Yuqing Kong · Yizhou Wang
Poster
Wed 14:30 Stochastic Gradient/Mirror Descent: Minimax Optimality and Implicit Regularization
Navid Azizan · Babak Hassibi
Poster
Wed 14:30 An analytic theory of generalization dynamics and transfer learning in deep linear networks
Andrew Lampinen · Surya Ganguli
Poster
Tue 14:30 How Powerful are Graph Neural Networks?
Keyulu Xu · Weihua Hu · Jure Leskovec · Stefanie Jegelka
Poster
Wed 14:30 Subgradient Descent Learns Orthogonal Dictionaries
Yu Bai · Qijia Jiang · Ju Sun
Poster
Wed 14:30 Critical Learning Periods in Deep Networks
Alessandro Achille · Matteo Rovere · Stefano Soatto
Poster
Wed 14:30 A Convergence Analysis of Gradient Descent for Deep Linear Neural Networks
Sanjeev Arora · Nadav Cohen · Noah Golowich · Wei Hu
Poster
Wed 14:30 Adaptivity of deep ReLU network for learning in Besov and mixed smooth Besov spaces: optimal rate and curse of dimensionality
Taiji Suzuki
Poster
Wed 14:30 Deterministic PAC-Bayesian generalization bounds for deep networks via generalizing noise-resilience
Vaishnavh Nagarajan · Zico Kolter
Poster
Thu 14:30 Deep learning generalizes because the parameter-function map is biased towards simple functions
Guillermo Valle-Perez · Chico Q. Camargo · Ard Louis