Poster
|
Wed 14:30
|
Caveats for information bottleneck in deterministic scenarios
Artemy Kolchinsky · Brendan D Tracey · Steven Van Kuyk
|
|
Poster
|
Wed 14:30
|
Learning to Make Analogies by Contrasting Abstract Relational Structure
Felix Hill · Adam Santoro · David Barrett · Ari Morcos · Timothy Lillicrap
|
|
Poster
|
Wed 14:30
|
Max-MIG: an Information Theoretic Approach for Joint Learning from Crowds
Peng Cao · Yilun Xu · Yuqing Kong · Yizhou Wang
|
|
Poster
|
Wed 14:30
|
Stochastic Gradient/Mirror Descent: Minimax Optimality and Implicit Regularization
Navid Azizan · Babak Hassibi
|
|
Poster
|
Wed 14:30
|
An analytic theory of generalization dynamics and transfer learning in deep linear networks
Andrew Lampinen · Surya Ganguli
|
|
Poster
|
Tue 14:30
|
How Powerful are Graph Neural Networks?
Keyulu Xu · Weihua Hu · Jure Leskovec · Stefanie Jegelka
|
|
Poster
|
Wed 14:30
|
Subgradient Descent Learns Orthogonal Dictionaries
Yu Bai · Qijia Jiang · Ju Sun
|
|
Poster
|
Wed 14:30
|
Critical Learning Periods in Deep Networks
Alessandro Achille · Matteo Rovere · Stefano Soatto
|
|
Poster
|
Wed 14:30
|
A Convergence Analysis of Gradient Descent for Deep Linear Neural Networks
Sanjeev Arora · Nadav Cohen · Noah Golowich · Wei Hu
|
|
Poster
|
Wed 14:30
|
Adaptivity of deep ReLU network for learning in Besov and mixed smooth Besov spaces: optimal rate and curse of dimensionality
Taiji Suzuki
|
|
Poster
|
Wed 14:30
|
Deterministic PAC-Bayesian generalization bounds for deep networks via generalizing noise-resilience
Vaishnavh Nagarajan · Zico Kolter
|
|
Poster
|
Thu 14:30
|
Deep learning generalizes because the parameter-function map is biased towards simple functions
Guillermo Valle-Perez · Chico Q. Camargo · Ard Louis
|
|