Skip to yearly menu bar Skip to main content


Search All 2023 Events
 

48 Results

<<   <   Page 4 of 4   >>   >
Poster
On the Effectiveness of Out-of-Distribution Data in Self-Supervised Long-Tail Learning.
Jianhong Bai · Zuozhu Liu · Hualiang Wang · Jin Hao · YANG FENG · Huanpeng Chu · Haoji Hu
Poster
Harnessing Out-Of-Distribution Examples via Augmenting Content and Style
Zhuo Huang · Xiaobo Xia · Li Shen · Bo Han · Mingming Gong · Chen Gong · Tongliang Liu
Poster
Wed 2:30 Out-of-distribution Detection with Implicit Outlier Transformation
Qizhou Wang · Junjie Ye · Feng Liu · Quanyu Dai · Marcus Kalander · Tongliang Liu · Jianye HAO · Bo Han
Poster
Understanding Why Generalized Reweighting Does Not Improve Over ERM
Runtian Zhai · Chen Dan · Zico Kolter · Pradeep K Ravikumar
Poster
Sequential Gradient Coding For Straggler Mitigation
Nikhil Krishnan Muralee Krishnan · MohammadReza Ebrahimi · Ashish Khisti
Poster
Tue 2:30 Long-Tailed Learning Requires Feature Learning
Thomas Laurent · James von Brecht · Xavier Bresson
Poster
A Learning Based Hypothesis Test for Harmful Covariate Shift
Tom Ginsberg · Zhongyuan Liang · Rahul G. Krishnan
Poster
Mon 2:30 A new characterization of the edge of stability based on a sharpness measure aware of batch gradient distribution
Sungyoon Lee · Cheongjae Jang
Oral
Mon 6:00 The Symmetric Generalized Eigenvalue Problem as a Nash Equilibrium
Ian Gemp · Charlie Chen · Brian McWilliams
Poster
Mon 7:30 The Symmetric Generalized Eigenvalue Problem as a Nash Equilibrium
Ian Gemp · Charlie Chen · Brian McWilliams
Poster
Mon 2:30 Deconstructing Distributions: A Pointwise Framework of Learning
Gal Kaplun · Nikhil Ghosh · Saurabh Garg · Boaz Barak · Preetum Nakkiran
Poster
Mon 2:30 Distributed Extra-gradient with Optimal Complexity and Communication Guarantees
Ali Ramezani-Kebrya · Kimon Antonakopoulos · Igor Krawczuk · Justin Deschenaux · Volkan Cevher