firstbacksecondback
34 Results
Workshop
|
On Gradients of Deep Generative Models for Representation-Invariant Anomaly Detection Sam Dauncey · Christopher Holmes · Christopher Williams · Fabian Falck |
||
Poster
|
Tue 2:30 |
Self-supervised learning with rotation-invariant kernels Léon Zheng · Gilles Puy · Elisa Riccietti · Patrick Perez · Rémi Gribonval |
|
Poster
|
Automated Data Augmentations for Graph Classification Youzhi Luo · Michael McThrow · Wing Yee Au · Tao Komikado · Kanji Uchino · Koji Maruhashi · Shuiwang Ji |
||
Poster
|
Contrastive Learning Can Find An Optimal Basis For Approximately View-Invariant Functions Daniel D Johnson · Ayoub El Hanchi · Chris Maddison |
||
Poster
|
Scale-invariant Bayesian Neural Networks with Connectivity Tangent Kernel SungYub Kim · Sihwan Park · Kyungsu Kim · Eunho Yang |
||
Oral
|
Tue 1:30 |
Self-supervised learning with rotation-invariant kernels Léon Zheng · Gilles Puy · Elisa Riccietti · Patrick Perez · Rémi Gribonval |
|
Workshop
|
Invariant preservation in machine learned PDE solvers via error correction Nick McGreivy · Ammar Hakim |
||
Poster
|
Mon 7:30 |
Amortised Invariance Learning for Contrastive Self-Supervision Ruchika Chavhan · Jan Stuehmer · Calum Heggan · Mehrdad Yaghoobi · Timothy Hospedales |
|
Poster
|
Mon 7:30 |
Fairness and Accuracy under Domain Generalization Thai-Hoang Pham · Xueru Zhang · Ping Zhang |
|
Poster
|
Malign Overfitting: Interpolation and Invariance are Fundamentally at Odds Yoav Wald · Gal Yona · Uri Shalit · Yair Carmon |
||
Poster
|
Planckian Jitter: countering the color-crippling effects of color jitter on self-supervised training Simone Zini · Alex Gomez-Villa · Marco Buzzelli · Bartłomiej Twardowski · Andrew Bagdanov · Joost van de Weijer |
||
Poster
|
Wed 2:30 |
How Much Data Are Augmentations Worth? An Investigation into Scaling Laws, Invariance, and Implicit Regularization Jonas Geiping · Micah Goldblum · Gowthami Somepalli · Ravid Shwartz-Ziv · Tom Goldstein · Andrew Wilson |