Skip to yearly menu bar Skip to main content


Search All 2023 Events
 

34 Results

<<   <   Page 1 of 3   >   >>
Workshop
On Gradients of Deep Generative Models for Representation-Invariant Anomaly Detection
Sam Dauncey · Christopher Holmes · Christopher Williams · Fabian Falck
Poster
Tue 2:30 Self-supervised learning with rotation-invariant kernels
Léon Zheng · Gilles Puy · Elisa Riccietti · Patrick Perez · Rémi Gribonval
Poster
Automated Data Augmentations for Graph Classification
Youzhi Luo · Michael McThrow · Wing Yee Au · Tao Komikado · Kanji Uchino · Koji Maruhashi · Shuiwang Ji
Poster
Contrastive Learning Can Find An Optimal Basis For Approximately View-Invariant Functions
Daniel D Johnson · Ayoub El Hanchi · Chris Maddison
Poster
Scale-invariant Bayesian Neural Networks with Connectivity Tangent Kernel
SungYub Kim · Sihwan Park · Kyungsu Kim · Eunho Yang
Oral
Tue 1:30 Self-supervised learning with rotation-invariant kernels
Léon Zheng · Gilles Puy · Elisa Riccietti · Patrick Perez · Rémi Gribonval
Workshop
Invariant preservation in machine learned PDE solvers via error correction
Nick McGreivy · Ammar Hakim
Poster
Mon 7:30 Amortised Invariance Learning for Contrastive Self-Supervision
Ruchika Chavhan · Jan Stuehmer · Calum Heggan · Mehrdad Yaghoobi · Timothy Hospedales
Poster
Malign Overfitting: Interpolation and Invariance are Fundamentally at Odds
Yoav Wald · Gal Yona · Uri Shalit · Yair Carmon
Poster
Planckian Jitter: countering the color-crippling effects of color jitter on self-supervised training
Simone Zini · Alex Gomez-Villa · Marco Buzzelli · Bartłomiej Twardowski · Andrew Bagdanov · Joost van de Weijer
Poster
Wed 2:30 How Much Data Are Augmentations Worth? An Investigation into Scaling Laws, Invariance, and Implicit Regularization
Jonas Geiping · Micah Goldblum · Gowthami Somepalli · Ravid Shwartz-Ziv · Tom Goldstein · Andrew Wilson