Session
Poster Session 03
Benefit of deep learning with non-convex noisy gradient descent: Provable excess risk bound and superiority to kernel methods
Taiji Suzuki · Akiyama Shunta
Establishing a theoretical analysis that explains why deep learning can outperform shallow learning such as kernel methods is one of the biggest issues in the deep learning literature. Towards answering this question, we evaluate excess risk of a deep learning estimator trained by a noisy gradient descent with ridge regularization on a mildly overparameterized neural network, and discuss its superiority to a class of linear estimators that includes neural tangent kernel approach, random feature model, other kernel methods, $k$-NN estimator and so on. We consider a teacher-student regression model, and eventually show that {\it any} linear estimator can be outperformed by deep learning in a sense of the minimax optimal rate especially for a high dimension setting. The obtained excess bounds are so-called fast learning rate which is faster than $O(1/\sqrt{n})$ that is obtained by usual Rademacher complexity analysis. This discrepancy is induced by the non-convex geometry of the model and the noisy gradient descent used for neural network training provably reaches a near global optimal solution even though the loss landscape is highly non-convex. Although the noisy gradient descent does not employ any explicit or implicit sparsity inducing regularization, it shows a preferable generalization performance that dominates linear estimators.
Deberta: Decoding-Enhanced Bert With Disentangled Attention
Pengcheng He · Xiaodong Liu · Jianfeng Gao · Weizhu Chen
Recent progress in pre-trained neural language models has significantly improved the performance of many natural language processing (NLP) tasks. In this paper we propose a new model architecture DeBERTa (Decoding-enhanced BERT with disentangled attention) that improves the BERT and RoBERTa models using two novel techniques. The first is the disentangled attention mechanism, where each word is represented using two vectors that encode its content and position, respectively, and the attention weights among words are computed using disentangled matrices on their contents and relative positions, respectively. Second, an enhanced mask decoder is used to incorporate absolute positions in the decoding layer to predict the masked tokens in model pre-training. In addition, a new virtual adversarial training method is used for fine-tuning to improve models’ generalization. We show that these techniques significantly improve the efficiency of model pre-training and the performance of both natural language understand(NLU) and natural langauge generation (NLG) downstream tasks. Compared to RoBERTa-Large, a DeBERTa model trained on half of the training data performs consistently better on a wide range of NLP tasks, achieving improvements on MNLI by +0.9% (90.2% vs. 91.1%), on SQuAD v2.0 by +2.3% (88.4% vs. 90.7%) and RACE by +3.6% (83.2% vs. 86.8%). Notably, we scale up DeBERTa by training a larger version that consists of 48 Transform layers with 1.5 billion parameters. The significant performance boost makes the single DeBERTa model surpass the human performance on the SuperGLUE benchmark (Wang et al., 2019a) for the first time in terms of macro-average score (89.9 versus 89.8), and the ensemble DeBERTa model sits atop the SuperGLUE leaderboard as of January 6, 2021, outperforming the human baseline by a decent margin (90.3 versus 89.8). The pre-trained DeBERTa models and the source code were released at: https://github.com/microsoft/DeBERTa.
Growing applications of generative models have led to new threats such as malicious personation and digital copyright infringement. One solution to these threats is model attribution, i.e., the identification of user-end models where the contents under question are generated. Existing studies showed empirical feasibility of attribution through a centralized classifier trained on all existing user-end models. However, this approach is not scalable in a reality where the number of models ever grows. Neither does it provide an attributability guarantee. To this end, this paper studies decentralized attribution, which relies on binary classifiers associated with each user-end model. Each binary classifier is parameterized by a user-specific key and distinguishes its associated model distribution from the authentic data distribution. We develop sufficient conditions of the keys that guarantee an attributability lower bound. Our method is validated on MNIST, CelebA, and FFHQ datasets. We also examine the trade-off between generation quality and robustness of attribution against adversarial post-processes.
Latent Skill Planning for Exploration and Transfer
Kevin Xie · Homanga Bharadhwaj · Danijar Hafner · Animesh Garg · Florian Shkurti
To quickly solve new tasks in complex environments, intelligent agents need to build up reusable knowledge. For example, a learned world model captures knowledge about the environment that applies to new tasks. Similarly, skills capture general behaviors that can apply to new tasks. In this paper, we investigate how these two approaches can be integrated into a single reinforcement learning agent. Specifically, we leverage the idea of partial amortization for fast adaptation at test time. For this, actions are produced by a policy that is learned over time while the skills it conditions on are chosen using online planning. We demonstrate the benefits of our design decisions across a suite of challenging locomotion tasks and demonstrate improved sample efficiency in single tasks as well as in transfer from one task to another, as compared to competitive baselines. Videos are available at: https://sites.google.com/view/latent-skill-planning/
Learning Energy-Based Models by Diffusion Recovery Likelihood
Ruiqi Gao · Yang Song · Ben Poole · Yingnian Wu · Durk Kingma
While energy-based models (EBMs) exhibit a number of desirable properties, training and sampling on high-dimensional datasets remains challenging. Inspired by recent progress on diffusion probabilistic models, we present a diffusion recovery likelihood method to tractably learn and sample from a sequence of EBMs trained on increasingly noisy versions of a dataset. Each EBM is trained with recovery likelihood, which maximizes the conditional probability of the data at a certain noise level given their noisy versions at a higher noise level. Optimizing recovery likelihood is more tractable than marginal likelihood, as sampling from the conditional distributions is much easier than sampling from the marginal distributions. After training, synthesized images can be generated by the sampling process that initializes from Gaussian white noise distribution and progressively samples the conditional distributions at decreasingly lower noise levels. Our method generates high fidelity samples on various image datasets. On unconditional CIFAR-10 our method achieves FID 9.58 and inception score 8.30, superior to the majority of GANs. Moreover, we demonstrate that unlike previous work on EBMs, our long-run MCMC samples from the conditional distributions do not diverge and still represent realistic images, allowing us to accurately estimate the normalized density of data even for high-dimensional datasets. Our implementation is available at \url{https://github.com/ruiqigao/recovery_likelihood}.
MONGOOSE: A Learnable LSH Framework for Efficient Neural Network Training
Beidi Chen · Zichang Liu · Binghui Peng · Zhaozhuo Xu · Jonathan L Li · Tri Dao · Zhao Song · Anshumali Shrivastava · Christopher Re
Recent advances by practitioners in the deep learning community have breathed new life into Locality Sensitive Hashing (LSH), using it to reduce memory and time bottlenecks in neural network (NN) training. However, while LSH has sub-linear guarantees for approximate near-neighbor search in theory, it is known to have inefficient query time in practice due to its use of random hash functions. Moreover, when model parameters are changing, LSH suffers from update overhead. This work is motivated by an observation that model parameters evolve slowly, such that the changes do not always require an LSH update to maintain performance. This phenomenon points to the potential for a reduction in update time and allows for a modified learnable version of data-dependent LSH to improve query time at a low cost. We use the above insights to build MONGOOSE, an end-to-end LSH framework for efficient NN training. In particular, MONGOOSE is equipped with a scheduling algorithm to adaptively perform LSH updates with provable guarantees and learnable hash functions to improve query efficiency. Empirically, we validate MONGOOSE on large-scale deep learning models for recommendation systems and language modeling. We find that it achieves up to 8% better accuracy compared to previous LSH approaches, with $6.5 \times$ speed-up and $6\times$ reduction in memory usage.
Random Feature Attention
Hao Peng · Nikolaos Pappas · Dani Yogatama · Roy Schwartz · Noah Smith · Lingpeng Kong
Transformers are state-of-the-art models for a variety of sequence modeling tasks. At their core is an attention function which models pairwise interactions between the inputs at every timestep. While attention is powerful, it does not scale efficiently to long sequences due to its quadratic time and space complexity in the sequence length. We propose RFA, a linear time and space attention that uses random feature methods to approximate the softmax function, and explore its application in transformers. RFA can be used as a drop-in replacement for conventional softmax attention and offers a straightforward way of learning with recency bias through an optional gating mechanism. Experiments on language modeling and machine translation demonstrate that RFA achieves similar or better performance compared to strong transformer baselines. In the machine translation experiment, RFA decodes twice as fast as a vanilla transformer. Compared to existing efficient transformer variants, RFA is competitive in terms of both accuracy and efficiency on three long text classification datasets. Our analysis shows that RFA’s efficiency gains are especially notable on long sequences, suggesting that RFA will be particularly useful in tasks that require working with large inputs, fast decoding speed, or low memory footprints.
Regularized Inverse Reinforcement Learning
Wonseok Jeon · Chen-Yang Su · Paul Barde · Thang Doan · Derek Nowrouzezahrai · Joelle Pineau
Inverse Reinforcement Learning (IRL) aims to facilitate a learner’s ability to imitate expert behavior by acquiring reward functions that explain the expert’s decisions. Regularized IRLapplies strongly convex regularizers to the learner’s policy in order to avoid the expert’s behavior being rationalized by arbitrary constant rewards, also known as degenerate solutions. We propose tractable solutions, and practical methods to obtain them, for regularized IRL. Current methods are restricted to the maximum-entropy IRL framework, limiting them to Shannon-entropy regularizers, as well as proposing solutions that are intractable in practice. We present theoretical backing for our proposed IRL method’s applicability to both discrete and continuous controls, empirically validating our performance on a variety of tasks.
Remembering for the Right Reasons: Explanations Reduce Catastrophic Forgetting
Sayna Ebrahimi · Suzanne Petryk · Akash Gokul · William Gan · Joseph E Gonzalez · Marcus Rohrbach · trevor darrell
The goal of continual learning (CL) is to learn a sequence of tasks without suffering from the phenomenon of catastrophic forgetting. Previous work has shown that leveraging memory in the form of a replay buffer can reduce performance degradation on prior tasks. We hypothesize that forgetting can be further reduced when the model is encouraged to remember the \textit{evidence} for previously made decisions. As a first step towards exploring this hypothesis, we propose a simple novel training paradigm, called Remembering for the Right Reasons (RRR), that additionally stores visual model explanations for each example in the buffer and ensures the model has ``the right reasons'' for its predictions by encouraging its explanations to remain consistent with those used to make decisions at training time. Without this constraint, there is a drift in explanations and increase in forgetting as conventional continual learning algorithms learn new tasks. We demonstrate how RRR can be easily added to any memory or regularization-based approach and results in reduced forgetting, and more importantly, improved model explanations. We have evaluated our approach in the standard and few-shot settings and observed a consistent improvement across various CL approaches using different architectures and techniques to generate model explanations and demonstrated our approach showing a promising connection between explainability and continual learning. Our code is available at \url{https://github.com/SaynaEbrahimi/Remembering-for-the-Right-Reasons}.
Representation Learning for Sequence Data with Deep Autoencoding Predictive Components
Junwen Bai · Weiran Wang · Yingbo Zhou · Caiming Xiong
We propose Deep Autoencoding Predictive Components (DAPC) -- a self-supervised representation learning method for sequence data, based on the intuition that useful representations of sequence data should exhibit a simple structure in the latent space. We encourage this latent structure by maximizing an estimate of \emph{predictive information} of latent feature sequences, which is the mutual information between the past and future windows at each time step. In contrast to the mutual information lower bound commonly used by contrastive learning, the estimate of predictive information we adopt is exact under a Gaussian assumption. Additionally, it can be computed without negative sampling. To reduce the degeneracy of the latent space extracted by powerful encoders and keep useful information from the inputs, we regularize predictive information learning with a challenging masked reconstruction loss. We demonstrate that our method recovers the latent space of noisy dynamical systems, extracts predictive features for forecasting tasks, and improves automatic speech recognition when used to pretrain the encoder on large amounts of unlabeled data.
Robust Curriculum Learning: from clean label detection to noisy label self-correction
Tianyi Zhou · Shengjie Wang · Jeff Bilmes
Neural network training can easily overfit noisy labels resulting in poor generalization performance. Existing methods address this problem by (1) filtering out the noisy data and only using the clean data for training or (2) relabeling the noisy data by the model during training or by another model trained only on a clean dataset. However, the former does not leverage the features' information of wrongly-labeled data, while the latter may produce wrong pseudo-labels for some data and introduce extra noises. In this paper, we propose a smooth transition and interplay between these two strategies as a curriculum that selects training samples dynamically. In particular, we start with learning from clean data and then gradually move to learn noisy-labeled data with pseudo labels produced by a time-ensemble of the model and data augmentations. Instead of using the instantaneous loss computed at the current step, our data selection is based on the dynamics of both the loss and output consistency for each sample across historical steps and different data augmentations, resulting in more precise detection of both clean labels and correct pseudo labels. On multiple benchmarks of noisy labels, we show that our curriculum learning strategy can significantly improve the test accuracy without any auxiliary model or extra clean data.
Sequential Density Ratio Estimation for Simultaneous Optimization of Speed and Accuracy
Akinori Ebihara · Taiki Miyagawa · Kazuyuki Sakurai · Hitoshi Imaoka
Classifying sequential data as early and as accurately as possible is a challenging yet critical problem, especially when a sampling cost is high. One algorithm that achieves this goal is the sequential probability ratio test (SPRT), which is known as Bayes-optimal: it can keep the expected number of data samples as small as possible, given the desired error upper-bound. However, the original SPRT makes two critical assumptions that limit its application in real-world scenarios: (i) samples are independently and identically distributed, and (ii) the likelihood of the data being derived from each class can be calculated precisely. Here, we propose the SPRT-TANDEM, a deep neural network-based SPRT algorithm that overcomes the above two obstacles. The SPRT-TANDEM sequentially estimates the log-likelihood ratio of two alternative hypotheses by leveraging a novel Loss function for Log-Likelihood Ratio estimation (LLLR) while allowing correlations up to $N (\in \mathbb{N})$ preceding samples. In tests on one original and two public video databases, Nosaic MNIST, UCF101, and SiW, the SPRT-TANDEM achieves statistically significantly better classification accuracy than other baseline classifiers, with a smaller number of data samples. The code and Nosaic MNIST are publicly available at https://github.com/TaikiMiyagawa/SPRT-TANDEM.
SOLAR: Sparse Orthogonal Learned and Random Embeddings
Tharun Kumar Reddy Medini · Beidi Chen · Anshumali Shrivastava
Dense embedding models are commonly deployed in commercial search engines, wherein all the document vectors are pre-computed, and near-neighbor search (NNS) is performed with the query vector to find relevant documents. However, the bottleneck of indexing a large number of dense vectors and performing an NNS hurts the query time and accuracy of these models. In this paper, we argue that high-dimensional and ultra-sparse embedding is a significantly superior alternative to dense low-dimensional embedding for both query efficiency and accuracy. Extreme sparsity eliminates the need for NNS by replacing them with simple lookups, while its high dimensionality ensures that the embeddings are informative even when sparse. However, learning extremely high dimensional embeddings leads to blow up in the model size. To make the training feasible, we propose a partitioning algorithm that learns such high dimensional embeddings across multiple GPUs without any communication. This is facilitated by our novel asymmetric mixture of Sparse, Orthogonal, Learned and Random (SOLAR) Embeddings. The label vectors are random, sparse, and near-orthogonal by design, while the query vectors are learned and sparse. We theoretically prove that our way of one-sided learning is equivalent to learning both query and label embeddings. With these unique properties, we can successfully train 500K dimensional SOLAR embeddings for the tasks of searching through 1.6M books and multi-label classification on the three largest public datasets. We achieve superior precision and recall compared to the respective state-of-the-art baselines for each task with up to 10 times faster speed.
The Intrinsic Dimension of Images and Its Impact on Learning
Phil Pope · Chen Zhu · Ahmed Abdelkader · Micah Goldblum · Tom Goldstein
It is widely believed that natural image data exhibits low-dimensional structure despite the high dimensionality of conventional pixel representations. This idea underlies a common intuition for the remarkable success of deep learning in computer vision. In this work, we apply dimension estimation tools to popular datasets and investigate the role of low-dimensional structure in deep learning. We find that common natural image datasets indeed have very low intrinsic dimension relative to the high number of pixels in the images. Additionally, we find that low dimensional datasets are easier for neural networks to learn, and models solving these tasks generalize better from training to test data. Along the way, we develop a technique for validating our dimension estimation tools on synthetic data generated by GANs allowing us to actively manipulate the intrinsic dimension by controlling the image generation process. Code for our experiments may be found \href{https://github.com/ppope/dimensions}{here}.
When does preconditioning help or hurt generalization?
Shun-ichi Amari · Jimmy Ba · Roger Grosse · Xuechen Li · Atsushi Nitanda · Taiji Suzuki · Denny Wu · Ji Xu
While second order optimizers such as natural gradient descent (NGD) often speed up optimization, their effect on generalization has been called into question. This work presents a more nuanced view on how the \textit{implicit bias} of optimizers affects the comparison of generalization properties. We provide an exact asymptotic bias-variance decomposition of the generalization error of preconditioned ridgeless regression in the overparameterized regime, and consider the inverse population Fisher information matrix (used in NGD) as a particular example. We determine the optimal preconditioner $\boldsymbol{P}$ for both the bias and variance, and find that the relative generalization performance of different optimizers depends on label noise and ``shape'' of the signal (true parameters): when the labels are noisy, the model is misspecified, or the signal is misaligned with the features, NGD can achieve lower risk; conversely, GD generalizes better under clean labels, a well-specified model, or aligned signal. Based on this analysis, we discuss several approaches to manage the bias-variance tradeoff, and the potential benefit of interpolating between first- and second-order updates. We then extend our analysis to regression in the reproducing kernel Hilbert space and demonstrate that preconditioning can lead to more efficient decrease in the population risk. Lastly, we empirically compare the generalization error of first- and second-order optimizers in neural network experiments, and observe robust trends matching our theoretical analysis.
We show when maximizing a properly defined $f$-divergence measure with respect to a classifier's predictions and the supervised labels is robust with label noise. Leveraging its variational form, we derive a nice decoupling property for a family of $f$-divergence measures when label noise presents, where the divergence is shown to be a linear combination of the variational difference defined on the clean distribution and a bias term introduced due to the noise. The above derivation helps us analyze the robustness of different $f$-divergence functions. With established robustness, this family of $f$-divergence functions arises as useful metrics for the problem of learning with noisy labels, which do not require the specification of the labels' noise rate. When they are possibly not robust, we propose fixes to make them so. In addition to the analytical results, we present thorough experimental evidence. Our code is available at https://github.com/UCSC-REAL/Robust-f-divergence-measures.
Zero-shot Synthesis with Group-Supervised Learning
Yunhao Ge · Sami Abu-El-Haija · Gan Xin · Laurent Itti
Visual cognition of primates is superior to that of artificial neural networks in its ability to “envision” a visual object, even a newly-introduced one, in different attributes including pose, position, color, texture, etc. To aid neural networks to envision objects with different attributes, we propose a family of objective functions, expressed on groups of examples, as a novel learning framework that we term Group-Supervised Learning (GSL). GSL allows us to decompose inputs into a disentangled representation with swappable components, that can be recombined to synthesize new samples. For instance, images of red boats & blue cars can be decomposed and recombined to synthesize novel images of red cars. We propose an implementation based on auto-encoder, termed group-supervised zero-shot synthesis network (GZS-Net) trained with our learning framework, that can produce a high-quality red car even if no such example is witnessed during training. We test our model and learning framework on existing benchmarks, in addition to a new dataset that we open-source. We qualitatively and quantitatively demonstrate that GZS-Net trained with GSL outperforms state-of-the-art methods
Bypassing the Ambient Dimension: Private SGD with Gradient Subspace Identification
Yingxue Zhou · Steven Wu · Arindam Banerjee
Differentially private SGD (DP-SGD) is one of the most popular methods for solving differentially private empirical risk minimization (ERM). Due to its noisy perturbation on each gradient update, the error rate of DP-SGD scales with the ambient dimension $p$, the number of parameters in the model. Such dependence can be problematic for over-parameterized models where $p \gg n$, the number of training samples. Existing lower bounds on private ERM show that such dependence on $p$ is inevitable in the worst case. In this paper, we circumvent the dependence on the ambient dimension by leveraging a low-dimensional structure of gradient space in deep networks---that is, the stochastic gradients for deep nets usually stay in a low dimensional subspace in the training process. We propose Projected DP-SGD that performs noise reduction by projecting the noisy gradients to a low-dimensional subspace, which is given by the top gradient eigenspace on a small public dataset. We provide a general sample complexity analysis on the public dataset for the gradient subspace identification problem and demonstrate that under certain low-dimensional assumptions the public sample complexity only grows logarithmically in $p$. Finally, we provide a theoretical analysis and empirical evaluations to show that our method can substantially improve the accuracy of DP-SGD in the high privacy regime (corresponding to low privacy loss $\epsilon$).
Contextual Transformation Networks for Online Continual Learning
Quang Pham · Chenghao Liu · Doyen Sahoo · Steven HOI
Continual learning methods with fixed architectures rely on a single network to learn models that can perform well on all tasks. As a result, they often only accommodate common features of those tasks but neglect each task's specific features. On the other hand, dynamic architecture methods can have a separate network for each task, but they are too expensive to train and not scalable in practice, especially in online settings. To address this problem, we propose a novel online continual learning method named ``Contextual Transformation Networks” (CTN) to efficiently model the \emph{task-specific features} while enjoying neglectable complexity overhead compared to other fixed architecture methods. Moreover, inspired by the Complementary Learning Systems (CLS) theory, we propose a novel dual memory design and an objective to train CTN that can address both catastrophic forgetting and knowledge transfer simultaneously. Our extensive experiments show that CTN is competitive with a large scale dynamic architecture network and consistently outperforms other fixed architecture methods under the same standard backbone. Our implementation can be found at \url{https://github.com/phquang/Contextual-Transformation-Network}.
Deep Partition Aggregation: Provable Defenses against General Poisoning Attacks
Alexander Levine · Soheil Feizi
Adversarial poisoning attacks distort training data in order to corrupt the test-time behavior of a classifier. A provable defense provides a certificate for each test sample, which is a lower bound on the magnitude of any adversarial distortion of the training set that can corrupt the test sample's classification. We propose two novel provable defenses against poisoning attacks: (i) Deep Partition Aggregation (DPA), a certified defense against a general poisoning threat model, defined as the insertion or deletion of a bounded number of samples to the training set --- by implication, this threat model also includes arbitrary distortions to a bounded number of images and/or labels; and (ii) Semi-Supervised DPA (SS-DPA), a certified defense against label-flipping poisoning attacks. DPA is an ensemble method where base models are trained on partitions of the training set determined by a hash function. DPA is related to both subset aggregation, a well-studied ensemble method in classical machine learning, as well as to randomized smoothing, a popular provable defense against evasion (inference) attacks. Our defense against label-flipping poison attacks, SS-DPA, uses a semi-supervised learning algorithm as its base classifier model: each base classifier is trained using the entire unlabeled training set in addition to the labels for a partition. SS-DPA significantly outperforms the existing certified defense for label-flipping attacks (Rosenfeld et al., 2020) on both MNIST and CIFAR-10: provably tolerating, for at least half of test images, over 600 label flips (vs. < 200 label flips) on MNIST and over 300 label flips (vs. 175 label flips) on CIFAR-10. Against general poisoning attacks where no prior certified defenses exists, DPA can certify $\geq$ 50% of test images against over 500 poison image insertions on MNIST, and nine insertions on CIFAR-10. These results establish new state-of-the-art provable defenses against general and label-flipping poison attacks. Code is available at https://github.com/alevine0/DPA
DeLighT: Deep and Light-weight Transformer
Sachin Mehta · Marjan Ghazvininejad · Srini Iyer · Luke Zettlemoyer · Hannaneh Hajishirzi
We introduce a deep and light-weight transformer, DeLighT, that delivers similar or better performance than standard transformer-based models with significantly fewer parameters. DeLighT more efficiently allocates parameters both (1) within each Transformer block using the DeLighT transformation, a deep and light-weight transformation and (2) across blocks using block-wise scaling, that allows for shallower and narrower DeLighT blocks near the input and wider and deeper DeLighT blocks near the output. Overall, DeLighT networks are 2.5 to 4 times deeper than standard transformer models and yet have fewer parameters and operations. Experiments on benchmark machine translation and language modeling tasks show that DeLighT matches or improves the performance of baseline Transformers with 2 to 3 times fewer parameters on average.
Explaining the Efficacy of Counterfactually Augmented Data
Divyansh Kaushik · Amrith Setlur · Eduard H Hovy · Zachary Lipton
In attempts to produce machine learning models less reliant on spurious patterns in NLP datasets, researchers have recently proposed curating counterfactually augmented data (CAD) via a human-in-the-loop process in which given some documents and their (initial) labels, humans must revise the text to make a counterfactual label applicable. Importantly, edits that are not necessary to flip the applicable label are prohibited. Models trained on the augmented (original and revised) data appear, empirically, to rely less on semantically irrelevant words and to generalize better out of domain. While this work draws loosely on causal thinking, the underlying causal model (even at an abstract level) and the principles underlying the observed out-of-domain improvements remain unclear. In this paper, we introduce a toy analog based on linear Gaussian models, observing interesting relationships between causal models, measurement noise, out-of-domain generalization, and reliance on spurious signals. Our analysis provides some insights that help to explain the efficacy of CAD. Moreover, we develop the hypothesis that while adding noise to causal features should degrade both in-domain and out-of-domain performance, adding noise to non-causal features should lead to relative improvements in out-of-domain performance. This idea inspires a speculative test for determining whether a feature attribution technique has identified the causal spans. If adding noise (e.g., by random word flips) to the highlighted spans degrades both in-domain and out-of-domain performance on a battery of challenge datasets, but adding noise to the complement gives improvements out-of-domain, this suggests we have identified causal spans. Thus, we present a large scale empirical study comparing spans edited to create CAD to those selected by attention and saliency maps. Across numerous challenge domains and models, we find that the hypothesized phenomenon is pronounced for CAD.
Federated Learning Based on Dynamic Regularization
Durmus Alp Emre Acar · Yue Zhao · Ramon Matas · Matthew Mattina · Paul Whatmough · Venkatesh Saligrama
We propose a novel federated learning method for distributively training neural network models, where the server orchestrates cooperation between a subset of randomly chosen devices in each round. We view Federated Learning problem primarily from a communication perspective and allow more device level computations to save transmission costs. We point out a fundamental dilemma, in that the minima of the local-device level empirical loss are inconsistent with those of the global empirical loss. Different from recent prior works, that either attempt inexact minimization or utilize devices for parallelizing gradient computation, we propose a dynamic regularizer for each device at each round, so that in the limit the global and device solutions are aligned. We demonstrate both through empirical results on real and synthetic data as well as analytical results that our scheme leads to efficient training, in both convex and non-convex settings, while being fully agnostic to device heterogeneity and robust to large number of devices, partial participation and unbalanced data.
Improved Estimation of Concentration Under $\ell_p$-Norm Distance Metrics Using Half Spaces
Jack Prescott · Xiao Zhang · David Evans
Concentration of measure has been argued to be the fundamental cause of adversarial vulnerability. Mahloujifar et al. (2019) presented an empirical way to measure the concentration of a data distribution using samples, and employed it to find lower bounds on intrinsic robustness for several benchmark datasets. However, it remains unclear whether these lower bounds are tight enough to provide a useful approximation for the intrinsic robustness of a dataset. To gain a deeper understanding of the concentration of measure phenomenon, we first extend the Gaussian Isoperimetric Inequality to non-spherical Gaussian measures and arbitrary $\ell_p$-norms ($p \geq 2$). We leverage these theoretical insights to design a method that uses half-spaces to estimate the concentration of any empirical dataset under $\ell_p$-norm distance metrics. Our proposed algorithm is more efficient than Mahloujifar et al. (2019)'s, and experiments on synthetic datasets and image benchmarks demonstrate that it is able to find much tighter intrinsic robustness bounds. These tighter estimates provide further evidence that rules out intrinsic dataset concentration as a possible explanation for the adversarial vulnerability of state-of-the-art classifiers.
Incorporating Symmetry into Deep Dynamics Models for Improved Generalization
Rui Wang · Robin Walters · Rose Yu
Recent work has shown deep learning can accelerate the prediction of physical dynamics relative to numerical solvers. However, limited physical accuracy and an inability to generalize under distributional shift limit its applicability to the real world. We propose to improve accuracy and generalization by incorporating symmetries into convolutional neural networks. Specifically, we employ a variety of methods each tailored to enforce a different symmetry. Our models are both theoretically and experimentally robust to distributional shift by symmetry group transformations and enjoy favorable sample complexity. We demonstrate the advantage of our approach on a variety of physical dynamics including Rayleigh–Bénard convection and real-world ocean currents and temperatures. Compare with image or text applications, our work is a significant step towards applying equivariant neural networks to high-dimensional systems with complex dynamics.
Layer-adaptive Sparsity for the Magnitude-based Pruning
Jaeho Lee · Sejun Park · Sangwoo Mo · Sungsoo Ahn · Jinwoo Shin
Recent discoveries on neural network pruning reveal that, with a carefully chosen layerwise sparsity, a simple magnitude-based pruning achieves state-of-the-art tradeoff between sparsity and performance. However, without a clear consensus on ``how to choose,'' the layerwise sparsities are mostly selected algorithm-by-algorithm, often resorting to handcrafted heuristics or an extensive hyperparameter search. To fill this gap, we propose a novel importance score for global pruning, coined layer-adaptive magnitude-based pruning (LAMP) score; the score is a rescaled version of weight magnitude that incorporates the model-level $\ell_2$ distortion incurred by pruning, and does not require any hyperparameter tuning or heavy computation. Under various image classification setups, LAMP consistently outperforms popular existing schemes for layerwise sparsity selection. Furthermore, we observe that LAMP continues to outperform baselines even in weight-rewinding setups, while the connectivity-oriented layerwise sparsity (the strongest baseline overall) performs worse than a simple global magnitude-based pruning in this case. Code: https://github.com/jaeho-lee/layer-adaptive-sparsity
Learning a Latent Simplex in Input Sparsity Time
Ainesh Bakshi · Chiranjib Bhattacharyya · Ravi Kannan · David Woodruff · Samson Zhou
We consider the problem of learning a latent $k$-vertex simplex $K\in\mathbb{R}^d$, given $\mathbf{A}\in\mathbb{R}^{d\times n}$, which can be viewed as $n$ data points that are formed by randomly perturbing some latent points in $K$, possibly beyond $K$. A large class of latent variable models, such as adversarial clustering, mixed membership stochastic block models, and topic models can be cast in this view of learning a latent simplex. Bhattacharyya and Kannan (SODA 2020) give an algorithm for learning such a $k$-vertex latent simplex in time roughly $O(k\cdot\text{nnz}(\mathbf{A}))$, where $\text{nnz}(\mathbf{A})$ is the number of non-zeros in $\mathbf{A}$. We show that the dependence on $k$ in the running time is unnecessary given a natural assumption about the mass of the top $k$ singular values of $\mathbf{A}$, which holds in many of these applications. Further, we show this assumption is necessary, as otherwise an algorithm for learning a latent simplex would imply a better low rank approximation algorithm than what is known. We obtain a spectral low-rank approximation to $\mathbf{A}$ in input-sparsity time and show that the column space thus obtained has small $\sin\Theta$ (angular) distance to the right top-$k$ singular space of $\mathbf{A}$. Our algorithm then selects $k$ points in the low-rank subspace with the largest inner product (in absolute value) with $k$ carefully chosen random vectors. By working in the low-rank subspace, we avoid reading the entire matrix in each iteration and thus circumvent the $\Theta(k\cdot\text{nnz}(\mathbf{A}))$ running time.
Learning A Minimax Optimizer: A Pilot Study
Jiayi Shen · Xiaohan Chen · Howard Heaton · Tianlong Chen · Jialin Liu · Wotao Yin · Zhangyang Wang
Solving continuous minimax optimization is of extensive practical interest, yet notoriously unstable and difficult. This paper introduces the learning to optimize(L2O) methodology to the minimax problems for the first time and addresses its accompanying unique challenges. We first present Twin-L2O, the first dedicated minimax L2O method consisting of two LSTMs for updating min and max variables separately. The decoupled design is found to facilitate learning, particularly when the min and max variables are highly asymmetric. Empirical experiments on a variety of minimax problems corroborate the effectiveness of Twin-L2O. We then discuss a crucial concern of Twin-L2O, i.e., its inevitably limited generalizability to unseen optimizees. To address this issue, we present two complementary strategies. Our first solution, Enhanced Twin-L2O, is empirically applicable for general minimax problems, by improving L2O training via leveraging curriculum learning. Our second alternative, called Safeguarded Twin-L2O, is a preliminary theoretical exploration stating that under some strong assumptions, it is possible to theoretically establish the convergence of Twin-L2O. We benchmark our algorithms on several testbed problems and compare against state-of-the-art minimax solvers. The code is available at: https://github.com/VITA-Group/L2O-Minimax.
Long Live the Lottery: The Existence of Winning Tickets in Lifelong Learning
Tianlong Chen · Zhenyu Zhang · Sijia Liu · Shiyu Chang · Zhangyang Wang
The lottery ticket hypothesis states that a highly sparsified sub-network can be trained in isolation, given the appropriate weight initialization. This paper extends that hypothesis from one-shot task learning, and demonstrates for the first time that such extremely compact and independently trainable sub-networks can be also identified in the lifelong learning scenario, which we call lifelong tickets. We show that the resulting lifelong ticket can further be leveraged to improve the performance of learning over continual tasks. However, it is highly non-trivial to conduct network pruning in the lifelong setting. Two critical roadblocks arise: i) As many tasks now arrive sequentially, finding tickets in a greedy weight pruning fashion will inevitably suffer from the intrinsic bias, that the earlier emerging tasks impact more; ii) As lifelong learning is consistently challenged by catastrophic forgetting, the compact network capacity of tickets might amplify the risk of forgetting. In view of those, we introduce two pruning options, e.g., top-down and bottom-up, for finding lifelong tickets. Compared to the top-down pruning that extends vanilla (iterative) pruning over sequential tasks, we show that the bottom-up one, which can dynamically shrink and (re-)expand model capacity, effectively avoids the undesirable excessive pruning in the early stage. We additionally introduce lottery teaching that further overcomes forgetting via knowledge distillation aided by external unlabeled data. Unifying those ingredients, we demonstrate the existence of very competitive lifelong tickets, e.g., achieving 3-8% of the dense model size with even higher accuracy, compared to strong class-incremental learning baselines on CIFAR-10/CIFAR-100/Tiny-ImageNet datasets. Codes available at https://github.com/VITA-Group/Lifelong-Learning-LTH.
MALI: A memory efficient and reverse accurate integrator for Neural ODEs
Juntang Zhuang · Nicha C Dvornek · sekhar tatikonda · James s Duncan
Neural ordinary differential equations (Neural ODEs) are a new family of deep-learning models with continuous depth. However, the numerical estimation of the gradient in the continuous case is not well solved: existing implementations of the adjoint method suffer from inaccuracy in reverse-time trajectory, while the naive method and the adaptive checkpoint adjoint method (ACA) have a memory cost that grows with integration time. In this project, based on the asynchronous leapfrog (ALF) solver, we propose the Memory-efficient ALF Integrator (MALI), which has a constant memory cost $w.r.t$ integration time similar to the adjoint method, and guarantees accuracy in reverse-time trajectory (hence accuracy in gradient estimation). We validate MALI in various tasks: on image recognition tasks, to our knowledge, MALI is the first to enable feasible training of a Neural ODE on ImageNet and outperform a well-tuned ResNet, while existing methods fail due to either heavy memory burden or inaccuracy; for time series modeling, MALI significantly outperforms the adjoint method; and for continuous generative models, MALI achieves new state-of-the-art performance. We provide a pypi package: https://jzkay12.github.io/TorchDiffEqPack
Meta-Learning with Neural Tangent Kernels
Yufan Zhou · Zhenyi Wang · Jiayi Xian · Changyou Chen · Jinhui Xu
Model Agnostic Meta-Learning (MAML) has emerged as a standard framework for meta-learning, where a meta-model is learned with the ability of fast adapting to new tasks. However, as a double-looped optimization problem, MAML needs to differentiate through the whole inner-loop optimization path for every outer-loop training step, which may lead to both computational inefficiency and sub-optimal solutions. In this paper, we generalize MAML to allow meta-learning to be defined in function spaces, and propose the first meta-learning paradigm in the Reproducing Kernel Hilbert Space (RKHS) induced by the meta-model's Neural Tangent Kernel (NTK). Within this paradigm, we introduce two meta-learning algorithms in the RKHS, which no longer need a sub-optimal iterative inner-loop adaptation as in the MAML framework. We achieve this goal by 1) replacing the adaptation with a fast-adaptive regularizer in the RKHS; and 2) solving the adaptation analytically based on the NTK theory. Extensive experimental studies demonstrate advantages of our paradigm in both efficiency and quality of solutions compared to related meta-learning algorithms. Another interesting feature of our proposed methods is that they are demonstrated to be more robust to adversarial attacks and out-of-distribution adaptation than popular baselines, as demonstrated in our experiments.
MixKD: Towards Efficient Distillation of Large-scale Language Models
Kevin Liang · Weituo Hao · Dinghan Shen · Yufan Zhou · Weizhu Chen · Changyou Chen · Lawrence Carin
Large-scale language models have recently demonstrated impressive empirical performance. Nevertheless, the improved results are attained at the price of bigger models, more power consumption, and slower inference, which hinder their applicability to low-resource (both memory and computation) platforms. Knowledge distillation (KD) has been demonstrated as an effective framework for compressing such big models. However, large-scale neural network systems are prone to memorize training instances, and thus tend to make inconsistent predictions when the data distribution is altered slightly. Moreover, the student model has few opportunities to request useful information from the teacher model when there is limited task-specific data available. To address these issues, we propose MixKD, a data-agnostic distillation framework that leverages mixup, a simple yet efficient data augmentation approach, to endow the resulting model with stronger generalization ability. Concretely, in addition to the original training examples, the student model is encouraged to mimic the teacher's behavior on the linear interpolation of example pairs as well. We prove from a theoretical perspective that under reasonable conditions MixKD gives rise to a smaller gap between the generalization error and the empirical error. To verify its effectiveness, we conduct experiments on the GLUE benchmark, where MixKD consistently leads to significant gains over the standard KD training, and outperforms several competitive baselines. Experiments under a limited-data setting and ablation studies further demonstrate the advantages of the proposed approach.
Model Patching: Closing the Subgroup Performance Gap with Data Augmentation
Karan Goel · Albert Gu · Yixuan Li · Christopher Re
Classifiers in machine learning are often brittle when deployed. Particularly concerning are models with inconsistent performance on specific subgroups of a class, e.g., exhibiting disparities in skin cancer classification in the presence or absence of a spurious bandage. To mitigate these performance differences, we introduce model patching, a two-stage framework for improving robustness that encourages the model to be invariant to subgroup differences, and focus on class information shared by subgroups. Model patching first models subgroup features within a class and learns semantic transformations between them, and then trains a classifier with data augmentations that deliberately manipulate subgroup features. We instantiate model patching with CAMEL, which (1) uses a CycleGAN to learn the intra-class, inter-subgroup augmentations, and (2) balances subgroup performance using a theoretically-motivated subgroup consistency regularizer, accompanied by a new robust objective. We demonstrate CAMEL’s effectiveness on 3 benchmark datasets, with reductions in robust error of up to 33% relative to the best baseline. Lastly, CAMEL successfully patches a model that fails due to spurious features on a real-world skin cancer dataset.
We propose a webly-supervised representation learning method that does not suffer from the annotation unscalability of supervised learning, nor the computation unscalability of self-supervised learning. Most existing works on webly-supervised representation learning adopt a vanilla supervised learning method without accounting for the prevalent noise in the training data, whereas most prior methods in learning with label noise are less effective for real-world large-scale noisy data. We propose momentum prototypes (MoPro), a simple contrastive learning method that achieves online label noise correction, out-of-distribution sample removal, and representation learning. MoPro achieves state-of-the-art performance on WebVision, a weakly-labeled noisy dataset. MoPro also shows superior performance when the pretrained model is transferred to down-stream image classification and detection tasks. It outperforms the ImageNet supervised pretrained model by +10.5 on 1-shot classification on VOC, and outperforms the best self-supervised pretrained model by +17.3 when finetuned on 1% of ImageNet labeled samples. Furthermore, MoPro is more robust to distribution shifts. Code and pretrained models are available at https://github.com/salesforce/MoPro.
Neural Attention Distillation: Erasing Backdoor Triggers from Deep Neural Networks
Yige Li · Xixiang Lyu · Nodens Koren · Lingjuan Lyu · Bo Li · Xingjun Ma
Deep neural networks (DNNs) are known vulnerable to backdoor attacks, a training time attack that injects a trigger pattern into a small proportion of training data so as to control the model's prediction at the test time. Backdoor attacks are notably dangerous since they do not affect the model's performance on clean examples, yet can fool the model to make the incorrect prediction whenever the trigger pattern appears during testing. In this paper, we propose a novel defense framework Neural Attention Distillation (NAD) to erase backdoor triggers from backdoored DNNs. NAD utilizes a teacher network to guide the finetuning of the backdoored student network on a small clean subset of data such that the intermediate-layer attention of the student network aligns with that of the teacher network. The teacher network can be obtained by an independent finetuning process on the same clean subset. We empirically show, against 6 state-of-the-art backdoor attacks, NAD can effectively erase the backdoor triggers using only 5\% clean training data without causing obvious performance degradation on clean examples. Our code is available at https://github.com/bboylyg/NAD.
Offline Model-Based Optimization via Normalized Maximum Likelihood Estimation
Justin Fu · Sergey Levine
In this work we consider data-driven optimization problems where one must maximize a function given only queries at a fixed set of points. This problem setting emerges in many domains where function evaluation is a complex and expensive process, such as in the design of materials, vehicles, or neural network architectures. Because the available data typically only covers a small manifold of the possible space of inputs, a principal challenge is to be able to construct algorithms that can reason about uncertainty and out-of-distribution values, since a naive optimizer can easily exploit an estimated model to return adversarial inputs. We propose to tackle the MBO problem by leveraging the normalized maximum-likelihood (NML) estimator, which provides a principled approach to handling uncertainty and out-of-distribution inputs. While in the standard formulation NML is intractable, we propose a tractable approximation that allows us to scale our method to high-capacity neural network models. We demonstrate that our method can effectively optimize high-dimensional design problems in a variety of disciplines such as chemistry, biology, and materials engineering.
On Dyadic Fairness: Exploring and Mitigating Bias in Graph Connections
Peizhao Li · Yifei Wang · Han Zhao · Pengyu Hong · Hongfu Liu
Disparate impact has raised serious concerns in machine learning applications and its societal impacts. In response to the need of mitigating discrimination, fairness has been regarded as a crucial property in algorithmic design. In this work, we study the problem of disparate impact on graph-structured data. Specifically, we focus on dyadic fairness, which articulates a fairness concept that a predictive relationship between two instances should be independent of the sensitive attributes. Based on this, we theoretically relate the graph connections to dyadic fairness on link predictive scores in learning graph neural networks, and reveal that regulating weights on existing edges in a graph contributes to dyadic fairness conditionally. Subsequently, we propose our algorithm, \textbf{FairAdj}, to empirically learn a fair adjacency matrix with proper graph structural constraints for fair link prediction, and in the meanwhile preserve predictive accuracy as much as possible. Empirical validation demonstrates that our method delivers effective dyadic fairness in terms of various statistics, and at the same time enjoys a favorable fairness-utility tradeoff.
One Network Fits All? Modular versus Monolithic Task Formulations in Neural Networks
Atish Agarwala · Abhimanyu Das · Brendan Juba · Rina Panigrahy · Vatsal Sharan · Xin Wang · Qiuyi Zhang
Can deep learning solve multiple, very different tasks simultaneously? We investigate how the representations of the underlying tasks affect the ability of a single neural network to learn them jointly. We present theoretical and empirical findings that a single neural network is capable of simultaneously learning multiple tasks from a combined data set, for a variety of methods for representing tasks---for example, when the distinct tasks are encoded by well-separated clusters or decision trees over some task-code attributes. Indeed, more strongly, we present a novel analysis that shows that families of simple programming-like constructs for the codes encoding the tasks are learnable by two-layer neural networks with standard training. We study more generally how the complexity of learning such combined tasks grows with the complexity of the task codes; we find that learning many tasks can be provably hard, even though the individual tasks are easy to learn. We provide empirical support for the usefulness of the learning bounds by training networks on clusters, decision trees, and SQL-style aggregation.
On Fast Adversarial Robustness Adaptation in Model-Agnostic Meta-Learning
Ren Wang · Kaidi Xu · Sijia Liu · Pin-Yu Chen · Tsui-Wei Weng · Chuang Gan · Meng Wang
Model-agnostic meta-learning (MAML) has emerged as one of the most successful meta-learning techniques in few-shot learning. It enables us to learn a $\textit{meta-initialization}$ of model parameters (that we call $\textit{meta-model}$) to rapidly adapt to new tasks using a small amount of labeled training data. Despite the generalization power of the meta-model, it remains elusive that how $\textit{adversarial robustness}$ can be maintained by MAML in few-shot learning. In addition to generalization, robustness is also desired for a meta-model to defend adversarial examples (attacks). Toward promoting adversarial robustness in MAML, we first study $\textit{when}$ a robustness-promoting regularization should be incorporated, given the fact that MAML adopts a bi-level (fine-tuning vs. meta-update) learning procedure. We show that robustifying the meta-update stage is sufficient to make robustness adapted to the task-specific fine-tuning stage even if the latter uses a standard training protocol. We also make additional justification on the acquired robustness adaptation by peering into the interpretability of neurons' activation maps. Furthermore, we investigate $\textit{how}$ robust regularization can $\textit{efficiently}$ be designed in MAML. We propose a general but easily-optimized robustness-regularized meta-learning framework, which allows the use of unlabeled data augmentation, fast adversarial attack generation, and computationally-light fine-tuning. In particular, we for the first time show that the auxiliary contrastive learning task can enhance the adversarial robustness of MAML. Finally, extensive experiments are conducted to demonstrate the effectiveness of our proposed methods in robust few-shot learning.
Online Adversarial Purification based on Self-supervised Learning
Changhao Shi · Chester Holtz · Gal Mishne
Deep neural networks are known to be vulnerable to adversarial examples, where a perturbation in the input space leads to an amplified shift in the latent network representation. In this paper, we combine canonical supervised learning with self-supervised representation learning, and present Self-supervised Online Adversarial Purification (SOAP), a novel defense strategy that uses a self-supervised loss to purify adversarial examples at test-time. Our approach leverages the label-independent nature of self-supervised signals and counters the adversarial perturbation with respect to the self-supervised tasks. SOAP yields competitive robust accuracy against state-of-the-art adversarial training and purification methods, with considerably less training complexity. In addition, our approach is robust even when adversaries are given the knowledge of the purification defense strategy. To the best of our knowledge, our paper is the first that generalizes the idea of using self-supervised signals to perform online test-time purification.
On the geometry of generalization and memorization in deep neural networks
Cory Stephenson · Suchismita Padhy · Abhinav Ganesh · Yue Hui · Hanlin Tang · SueYeon Chung
Understanding how large neural networks avoid memorizing training data is key to explaining their high generalization performance. To examine the structure of when and where memorization occurs in a deep network, we use a recently developed replica-based mean field theoretic geometric analysis method. We find that all layers preferentially learn from examples which share features, and link this behavior to generalization performance. Memorization predominately occurs in the deeper layers, due to decreasing object manifolds’ radius and dimension, whereas early layers are minimally affected. This predicts that generalization can be restored by reverting the final few layer weights to earlier epochs before significant memorization occurred, which is confirmed by the experiments. Additionally, by studying generalization under different model sizes, we reveal the connection between the double descent phenomenon and the underlying model geometry. Finally, analytical analysis shows that networks avoid memorization early in training because close to initialization, the gradient contribution from permuted examples are small. These findings provide quantitative evidence for the structure of memorization across layers of a deep neural network, the drivers for such structure, and its connection to manifold geometric properties.
Optimal Regularization can Mitigate Double Descent
Preetum Nakkiran · Prayaag Venkat · Sham M Kakade · Tengyu Ma
Recent empirical and theoretical studies have shown that many learning algorithms -- from linear regression to neural networks -- can have test performance that is non-monotonic in quantities such the sample size and model size. This striking phenomenon, often referred to as "double descent", has raised questions of if we need to re-think our current understanding of generalization. In this work, we study whether the double-descent phenomenon can be avoided by using optimal regularization. Theoretically, we prove that for certain linear regression models with isotropic data distribution, optimally-tuned $\ell_2$ regularization achieves monotonic test performance as we grow either the sample size or the model size. We also demonstrate empirically that optimally-tuned $\ell_2$ regularization can mitigate double descent for more general models, including neural networks. Our results suggest that it may also be informative to study the test risk scalings of various algorithms in the context of appropriately tuned regularization.
Optimizing Memory Placement using Evolutionary Graph Reinforcement Learning
Shauharda Khadka · Estelle Aflalo · Mattias Marder · Avrech Ben-David · Santiago Miret · Shie Mannor · Tamir Hazan · Hanlin Tang · Somdeb Majumdar
For deep neural network accelerators, memory movement is both energetically expensive and can bound computation. Therefore, optimal mapping of tensors to memory hierarchies is critical to performance. The growing complexity of neural networks calls for automated memory mapping instead of manual heuristic approaches; yet the search space of neural network computational graphs have previously been prohibitively large. We introduce Evolutionary Graph Reinforcement Learning (EGRL), a method designed for large search spaces, that combines graph neural networks, reinforcement learning, and evolutionary search. A set of fast, stateless policies guide the evolutionary search to improve its sample-efficiency. We train and validate our approach directly on the Intel NNP-I chip for inference. EGRL outperforms policy-gradient, evolutionary search and dynamic programming baselines on BERT, ResNet-101 and ResNet-50. We additionally achieve 28-78% speed-up compared to the native NNP-I compiler on all three workloads.
Parrot: Data-Driven Behavioral Priors for Reinforcement Learning
Avi Singh · Huihan Liu · Gaoyue Zhou · Albert Yu · Nicholas Rhinehart · Sergey Levine
Reinforcement learning provides a general framework for flexible decision making and control, but requires extensive data collection for each new task that an agent needs to learn. In other machine learning fields, such as natural language processing or computer vision, pre-training on large, previously collected datasets to bootstrap learning for new tasks has emerged as a powerful paradigm to reduce data requirements when learning a new task. In this paper, we ask the following question: how can we enable similarly useful pre-training for RL agents? We propose a method for pre-training behavioral priors that can capture complex input-output relationships observed in successful trials from a wide range of previously seen tasks, and we show how this learned prior can be used for rapidly learning new tasks without impeding the RL agent's ability to try out novel behaviors. We demonstrate the effectiveness of our approach in challenging robotic manipulation domains involving image observations and sparse reward functions, where our method outperforms prior works by a substantial margin. Additional materials can be found on our project website: https://sites.google.com/view/parrot-rl
Bloom filters are space-efficient probabilistic data structures that are used to test whether an element is a member of a set, and may return false positives. Recently, variations referred to as learned Bloom filters were developed that can provide improved performance in terms of the rate of false positives, by using a learned model for the represented set. However, previous methods for learned Bloom filters do not take full advantage of the learned model. Here we show how to frame the problem of optimal model utilization as an optimization problem, and using our framework derive algorithms that can achieve near-optimal performance in many cases.
Personalized Federated Learning with First Order Model Optimization
Michael Zhang · Karan Sapra · Sanja Fidler · Serena Yeung · Jose M. Alvarez
While federated learning traditionally aims to train a single global model across decentralized local datasets, one model may not always be ideal for all participating clients. Here we propose an alternative, where each client only federates with other relevant clients to obtain a stronger model per client-specific objectives. To achieve this personalization, rather than computing a single model average with constant weights for the entire federation as in traditional FL, we efficiently calculate optimal weighted model combinations for each client, based on figuring out how much a client can benefit from another's model. We do not assume knowledge of any underlying data distributions or client similarities, and allow each client to optimize for arbitrary target distributions of interest, enabling greater flexibility for personalization. We evaluate and characterize our method on a variety of federated settings, datasets, and degrees of local data heterogeneity. Our method outperforms existing alternatives, while also enabling new features for personalized FL such as transfer outside of local data distributions.
PlasticineLab: A Soft-Body Manipulation Benchmark with Differentiable Physics
Zhiao Huang · Yuanming Hu · Tao Du · Siyuan Zhou · Hao Su · Joshua B Tenenbaum · Chuang Gan
Simulated virtual environments serve as one of the main driving forces behind developing and evaluating skill learning algorithms. However, existing environments typically only simulate rigid body physics. Additionally, the simulation process usually does not provide gradients that might be useful for planning and control optimizations. We introduce a new differentiable physics benchmark called PasticineLab, which includes a diverse collection of soft body manipulation tasks. In each task, the agent uses manipulators to deform the plasticine into a desired configuration. The underlying physics engine supports differentiable elastic and plastic deformation using the DiffTaichi system, posing many under-explored challenges to robotic agents. We evaluate several existing reinforcement learning (RL) methods and gradient-based methods on this benchmark. Experimental results suggest that 1) RL-based approaches struggle to solve most of the tasks efficiently; 2) gradient-based approaches, by optimizing open-loop control sequences with the built-in differentiable physics engine, can rapidly find a solution within tens of iterations, but still fall short on multi-stage tasks that require long-term planning. We expect that PlasticineLab will encourage the development of novel algorithms that combine differentiable physics and RL for more complex physics-based skill learning tasks. PlasticineLab will be made publicly available.
Proximal Gradient Descent-Ascent: Variable Convergence under KŁ Geometry
Ziyi Chen · Yi Zhou · Tengyu Xu · Yingbin Liang
The gradient descent-ascent (GDA) algorithm has been widely applied to solve minimax optimization problems. In order to achieve convergent policy parameters for minimax optimization, it is important that GDA generates convergent variable sequences rather than convergent sequences of function value or gradient norm. However, the variable convergence of GDA has been proved only under convexity geometries, and it is lack of understanding in general nonconvex minimax optimization. This paper fills such a gap by studying the convergence of a more general proximal-GDA for regularized nonconvex-strongly-concave minimax optimization. Specifically, we show that proximal-GDA admits a novel Lyapunov function, which monotonically decreases in the minimax optimization process and drives the variable sequences to a critical point. By leveraging this Lyapunov function and the KL geometry that parameterizes the local geometries of general nonconvex functions, we formally establish the variable convergence of proximal-GDA to a certain critical point $x^*$, i.e., $x_t\to x^*, y_t\to y^*(x^*)$. Furthermore, over the full spectrum of the KL-parameterized geometry, we show that proximal-GDA achieves different types of convergence rates ranging from sublinear convergence up to finite-step convergence, depending on the geometry associated with the KL parameter. This is the first theoretical result on the variable convergence for nonconvex minimax optimization.
PseudoSeg: Designing Pseudo Labels for Semantic Segmentation
Yuliang Zou · Zizhao Zhang · Han Zhang · Chun-Liang Li · Xiao Bian · Jia-Bin Huang · Tomas Pfister
Recent advances in semi-supervised learning (SSL) demonstrate that a combination of consistency regularization and pseudo-labeling can effectively improve image classification accuracy in the low-data regime. Compared to classification, semantic segmentation tasks require much more intensive labeling costs. Thus, these tasks greatly benefit from data-efficient training methods. However, structured outputs in segmentation render particular difficulties (e.g., designing pseudo-labeling and augmentation) to apply existing SSL strategies. To address this problem, we present a simple and novel re-design of pseudo-labeling to generate well-calibrated structured pseudo labels for training with unlabeled or weakly-labeled data. Our proposed pseudo-labeling strategy is network structure agnostic to apply in a one-stage consistency training framework. We demonstrate the effectiveness of the proposed pseudo-labeling strategy in both low-data and high-data regimes. Extensive experiments have validated that pseudo labels generated from wisely fusing diverse sources and strong data augmentation are crucial to consistency training for segmentation. The source code will be released.
Regularization Matters in Policy Optimization - An Empirical Study on Continuous Control
Zhuang Liu · Xuanlin Li · Bingyi Kang · trevor darrell
Deep Reinforcement Learning (Deep RL) has been receiving increasingly more attention thanks to its encouraging performance on a variety of control tasks. Yet, conventional regularization techniques in training neural networks (e.g., $L_2$ regularization, dropout) have been largely ignored in RL methods, possibly because agents are typically trained and evaluated in the same environment, and because the deep RL community focuses more on high-level algorithm designs. In this work, we present the first comprehensive study of regularization techniques with multiple policy optimization algorithms on continuous control tasks. Interestingly, we find conventional regularization techniques on the policy networks can often bring large improvement, especially on harder tasks. Our findings are shown to be robust against training hyperparameter variations. We also compare these techniques with the more widely used entropy regularization. In addition, we study regularizing different components and find that only regularizing the policy network is typically the best. We further analyze why regularization may help generalization in RL from four perspectives - sample complexity, reward distribution, weight norm, and noise robustness. We hope our study provides guidance for future practices in regularizing policy optimization algorithms. Our code is available at https://github.com/xuanlinli17/iclr2021_rlreg .
Rethinking Architecture Selection in Differentiable NAS
Ruochen Wang · Minhao Cheng · Xiangning Chen · Xiaocheng Tang · Cho-Jui Hsieh
Differentiable Neural Architecture Search is one of the most popular Neural Architecture Search (NAS) methods for its search efficiency and simplicity, accomplished by jointly optimizing the model weight and architecture parameters in a weight-sharing supernet via gradient-based algorithms. At the end of the search phase, the operations with the largest architecture parameters will be selected to form the final architecture, with the implicit assumption that the values of architecture parameters reflect the operation strength. While much has been discussed about the supernet's optimization, the architecture selection process has received little attention. We provide empirical and theoretical analysis to show that the magnitude of architecture parameters does not necessarily indicate how much the operation contributes to the supernet's performance. We propose an alternative perturbation-based architecture selection that directly measures each operation's influence on the supernet. We re-evaluate several differentiable NAS methods with the proposed architecture selection and find that it is able to extract significantly improved architectures from the underlying supernets consistently. Furthermore, we find that several failure modes of DARTS can be greatly alleviated with the proposed selection method, indicating that much of the poor generalization observed in DARTS can be attributed to the failure of magnitude-based architecture selection rather than entirely the optimization of its supernet.
In this work, we investigate the positional encoding methods used in language pre-training (e.g., BERT) and identify several problems in the existing formulations. First, we show that in the absolute positional encoding, the addition operation applied on positional embeddings and word embeddings brings mixed correlations between the two heterogeneous information resources. It may bring unnecessary randomness in the attention and further limit the expressiveness of the model. Second, we question whether treating the position of the symbol \texttt{[CLS]} the same as other words is a reasonable design, considering its special role (the representation of the entire sentence) in the downstream tasks. Motivated from above analysis, we propose a new positional encoding method called \textbf{T}ransformer with \textbf{U}ntied \textbf{P}ositional \textbf{E}ncoding (TUPE). In the self-attention module, TUPE computes the word contextual correlation and positional correlation separately with different parameterizations and then adds them together. This design removes the mixed and noisy correlations over heterogeneous embeddings and offers more expressiveness by using different projection matrices. Furthermore, TUPE unties the \texttt{[CLS]} symbol from other positions, making it easier to capture information from all positions. Extensive experiments and ablation studies on GLUE benchmark demonstrate the effectiveness of the proposed method. Codes and models are released at \url{https://github.com/guolinke/TUPE}.
Robust and Generalizable Visual Representation Learning via Random Convolutions
Zhenlin Xu · Deyi Liu · Junlin Yang · Colin Raffel · Marc Niethammer
While successful for various computer vision tasks, deep neural networks have shown to be vulnerable to texture style shifts and small perturbations to which humans are robust. In this work, we show that the robustness of neural networks can be greatly improved through the use of random convolutions as data augmentation. Random convolutions are approximately shape-preserving and may distort local textures. Intuitively, randomized convolutions create an infinite number of new domains with similar global shapes but random local texture. Therefore, we explore using outputs of multi-scale random convolutions as new images or mixing them with the original images during training. When applying a network trained with our approach to unseen domains, our method consistently improves the performance on domain generalization benchmarks and is scalable to ImageNet. In particular, in the challenging scenario of generalizing to the sketch domain in PACS and to ImageNet-Sketch, our method outperforms state-of-art methods by a large margin. More interestingly, our method can benefit downstream tasks by providing a more robust pretrained visual representation.
Robust Reinforcement Learning on State Observations with Learned Optimal Adversary
Huan Zhang · Hongge Chen · Duane S Boning · Cho-Jui Hsieh
We study the robustness of reinforcement learning (RL) with adversarially perturbed state observations, which aligns with the setting of many adversarial attacks to deep reinforcement learning (DRL) and is also important for rolling out real-world RL agent under unpredictable sensing noise. With a fixed agent policy, we demonstrate that an optimal adversary to perturb state observations can be found, which is guaranteed to obtain the worst case agent reward. For DRL settings, this leads to a novel empirical adversarial attack to RL agents via a learned adversary that is much stronger than previous ones. To enhance the robustness of an agent, we propose a framework of alternating training with learned adversaries (ATLA), which trains an adversary online together with the agent using policy gradient following the optimal adversarial attack framework. Additionally, inspired by the analysis of state-adversarial Markov decision process (SA-MDP), we show that past states and actions (history) can be useful for learning a robust agent, and we empirically find a LSTM based policy can be more robust under adversaries. Empirical evaluations on a few continuous control environments show that ATLA achieves state-of-the-art performance under strong adversaries. Our code is available at https://github.com/huanzhang12/ATLArobustRL.
SAFENet: A Secure, Accurate and Fast Neural Network Inference
Qian Lou · Yilin Shen · Hongxia Jin · Lei Jiang
The advances in neural networks have driven many companies to provide prediction services to users in a wide range of applications. However, current prediction systems raise privacy concerns regarding the user's private data. A cryptographic neural network inference service is an efficient way to allow two parties to execute neural network inference without revealing either party’s data or model. Nevertheless, existing cryptographic neural network inference services suffer from huge running latency; in particular, the latency of communication-expensive cryptographic activation function is 3 orders of magnitude higher than plaintext-domain activation function. And activations are the necessary components of the modern neural networks. Therefore, slow cryptographic activation has become the primary obstacle of efficient cryptographic inference. In this paper, we propose a new technique, called SAFENet, to enable a Secure, Accurate and Fast nEural Network inference service. To speedup secure inference and guarantee inference accuracy, SAFENet includes channel-wise activation approximation with multiple-degree options. This is implemented by keeping the most useful activation channels and replacing the remaining, less useful, channels with various-degree polynomials. SAFENet also supports mixed-precision activation approximation by automatically assigning different replacement ratios to various layer; further increasing the approximation ratio and reducing inference latency. Our experimental results show SAFENet obtains the state-of-the-art inference latency and performance, reducing latency by $38\% \sim 61\%$ or improving accuracy by $1.8\% \sim 4\%$ over prior techniques on various encrypted datasets.
Score-Based Generative Modeling through Stochastic Differential Equations
Yang Song · Jascha Sohl-Dickstein · Durk Kingma · Abhishek Kumar · Stefano Ermon · Ben Poole
Creating noise from data is easy; creating data from noise is generative modeling. We present a stochastic differential equation (SDE) that smoothly transforms a complex data distribution to a known prior distribution by slowly injecting noise, and a corresponding reverse-time SDE that transforms the prior distribution back into the data distribution by slowly removing the noise. Crucially, the reverse-time SDE depends only on the time-dependent gradient field (a.k.a., score) of the perturbed data distribution. By leveraging advances in score-based generative modeling, we can accurately estimate these scores with neural networks, and use numerical SDE solvers to generate samples. We show that this framework encapsulates previous approaches in score-based generative modeling and diffusion probabilistic modeling, allowing for new sampling procedures and new modeling capabilities. In particular, we introduce a predictor-corrector framework to correct errors in the evolution of the discretized reverse-time SDE. We also derive an equivalent neural ODE that samples from the same distribution as the SDE, but additionally enables exact likelihood computation, and improved sampling efficiency. In addition, we provide a new way to solve inverse problems with score-based models, as demonstrated with experiments on class-conditional generation, image inpainting, and colorization. Combined with multiple architectural improvements, we achieve record-breaking performance for unconditional image generation on CIFAR-10 with an Inception score of 9.89 and FID of 2.20, a competitive likelihood of 2.99 bits/dim, and demonstrate high fidelity generation of $1024\times 1024$ images for the first time from a score-based generative model.
SCoRe: Pre-Training for Context Representation in Conversational Semantic Parsing
Tao Yu · Rui Zhang · Alex Polozov · Christopher Meek · Ahmed H Awadallah
Conversational Semantic Parsing (CSP) is the task of converting a sequence of natural language queries to formal language (e.g., SQL, SPARQL) that can be executed against a structured ontology (e.g. databases, knowledge bases). To accomplish this task, a CSP system needs to model the relation between the unstructured language utterance and the structured ontology while representing the multi-turn dynamics of the dialog. Pre-trained language models (LMs) are the state-of-the-art for various natural language processing tasks. However, existing pre-trained LMs that use language modeling training objectives over free-form text have limited ability to represent natural language references to contextual structural data. In this work, we present SCORE, a new pre-training approach for CSP tasks designed to induce representations that capture the alignment between the dialogue flow and the structural context. We demonstrate the broad applicability of SCORE to CSP tasks by combining SCORE with strong base systems on four different tasks (SPARC, COSQL, MWOZ, and SQA). We show that SCORE can improve the performance over all these base systems by a significant margin and achieves state-of-the-art results on three of them.
Selective Classification Can Magnify Disparities Across Groups
Erik Jones · Shiori Sagawa · Pang Wei Koh · Ananya Kumar · Percy Liang
Selective classification, in which models can abstain on uncertain predictions, is a natural approach to improving accuracy in settings where errors are costly but abstentions are manageable. In this paper, we find that while selective classification can improve average accuracies, it can simultaneously magnify existing accuracy disparities between various groups within a population, especially in the presence of spurious correlations. We observe this behavior consistently across five vision and NLP datasets. Surprisingly, increasing abstentions can even decrease accuracies on some groups. To better understand this phenomenon, we study the margin distribution, which captures the model’s confidences over all predictions. For symmetric margin distributions, we prove that whether selective classification monotonically improves or worsens accuracy is fully determined by the accuracy at full coverage (i.e., without any abstentions) and whether the distribution satisfies a property we call left-log-concavity. Our analysis also shows that selective classification tends to magnify full-coverage accuracy disparities. Motivated by our analysis, we train distributionally-robust models that achieve similar full-coverage accuracies across groups and show that selective classification uniformly improves each group on these models. Altogether, our results suggest that selective classification should be used with care and underscore the importance of training models to perform equally well across groups at full coverage.
Self-training For Few-shot Transfer Across Extreme Task Differences
Cheng Perng Phoo · Bharath Hariharan
Most few-shot learning techniques are pre-trained on a large, labeled “base dataset”. In problem domains where such large labeled datasets are not available for pre-training (e.g., X-ray, satellite images), one must resort to pre-training in a different “source” problem domain (e.g., ImageNet), which can be very different from the desired target task. Traditional few-shot and transfer learning techniques fail in the presence of such extreme differences between the source and target tasks. In this paper, we present a simple and effective solution to tackle this extreme domain gap: self-training a source domain representation on unlabeled data from the target domain. We show that this improves one-shot performance on the target domain by 2.9 points on average on the challenging BSCD-FSL benchmark consisting of datasets from multiple domains.
Semi-supervised Keypoint Localization
Olga Moskvyak · Frederic Maire · Feras Dayoub · Mahsa Baktashmotlagh
Knowledge about the locations of keypoints of an object in an image can assist in fine-grained classification and identification tasks, particularly for the case of objects that exhibit large variations in poses that greatly influence their visual appearance, such as wild animals. However, supervised training of a keypoint detection network requires annotating a large image dataset for each animal species, which is a labor-intensive task. To reduce the need for labeled data, we propose to learn simultaneously keypoint heatmaps and pose invariant keypoint representations in a semi-supervised manner using a small set of labeled images along with a larger set of unlabeled images. Keypoint representations are learnt with a semantic keypoint consistency constraint that forces the keypoint detection network to learn similar features for the same keypoint across the dataset. Pose invariance is achieved by making keypoint representations for the image and its augmented copies closer together in feature space. Our semi-supervised approach significantly outperforms previous methods on several benchmarks for human and animal body landmark localization.
In this paper, we cast fair machine learning as invariant machine learning. We first formulate a version of individual fairness that enforces invariance on certain sensitive sets. We then design a transport-based regularizer that enforces this version of individual fairness and develop an algorithm to minimize the regularizer efficiently. Our theoretical results guarantee the proposed approach trains certifiably fair ML models. Finally, in the experimental studies we demonstrate improved fairness metrics in comparison to several recent fair training procedures on three ML tasks that are susceptible to algorithmic bias.
Although spatio-temporal graph neural networks have achieved great empirical success in handling multiple correlated time series, they may be impractical in some real-world scenarios due to a lack of sufficient high-quality training data. Furthermore, spatio-temporal graph neural networks lack theoretical interpretation. To address these issues, we put forth a novel mathematically designed framework to analyze spatio-temporal data. Our proposed spatio-temporal graph scattering transform (ST-GST) extends traditional scattering transform to the spatio-temporal domain. It performs iterative applications of spatio-temporal graph wavelets and nonlinear activation functions, which can be viewed as a forward pass of spatio-temporal graph convolutional networks without training. Since all the filter coefficients in ST-GST are mathematically designed, it is promising for the real-world scenarios with limited training data, and also allows for a theoretical analysis, which shows that the proposed ST-GST is stable to small perturbations of input signals and structures. Finally, our experiments show that i) ST-GST outperforms spatio-temporal graph convolutional networks by an increase of 35% in accuracy for MSR Action3D dataset; ii) it is better and computationally more efficient to design the transform based on separable spatio-temporal graphs than the joint ones; and iii) nonlinearity in ST-GST is critical to empirical performance.
Taking Notes on the Fly Helps Language Pre-Training
Qiyu Wu · Chen Xing · Yatao Li · Guolin Ke · Di He · Tie-Yan Liu
How to make unsupervised language pre-training more efficient and less resource-intensive is an important research direction in NLP. In this paper, we focus on improving the efficiency of language pre-training methods through providing better data utilization. It is well-known that in language data corpus, words follow a heavy-tail distribution. A large proportion of words appear only very few times and the embeddings of rare words are usually poorly optimized. We argue that such embeddings carry inadequate semantic signals, which could make the data utilization inefficient and slow down the pre-training of the entire model. To mitigate this problem, we propose Taking Notes on the Fly (TNF), which takes notes for rare words on the fly during pre-training to help the model understand them when they occur next time. Specifically, TNF maintains a note dictionary and saves a rare word's contextual information in it as notes when the rare word occurs in a sentence. When the same rare word occurs again during training, the note information saved beforehand can be employed to enhance the semantics of the current sentence. By doing so, TNF provides a better data utilization since cross-sentence information is employed to cover the inadequate semantics caused by rare words in the sentences. We implement TNF on both BERT and ELECTRA to check its efficiency and effectiveness. Experimental results show that TNF's training time is 60% less than its backbone pre-training models when reaching the same performance. When trained with same number of iterations, TNF outperforms its backbone methods on most of downstream tasks and the average GLUE score. Code is attached in the supplementary material.
The Deep Bootstrap Framework: Good Online Learners are Good Offline Generalizers
Preetum Nakkiran · Behnam Neyshabur · Hanie Sedghi
We propose a new framework for reasoning about generalization in deep learning. The core idea is to couple the Real World, where optimizers take stochastic gradient steps on the empirical loss, to an Ideal World, where optimizers take steps on the population loss. This leads to an alternate decomposition of test error into: (1) the Ideal World test error plus (2) the gap between the two worlds. If the gap (2) is universally small, this reduces the problem of generalization in offline learning to the problem of optimization in online learning. We then give empirical evidence that this gap between worlds can be small in realistic deep learning settings, in particular supervised image classification. For example, CNNs generalize better than MLPs on image distributions in the Real World, but this is "because" they optimize faster on the population loss in the Ideal World. This suggests our framework is a useful tool for understanding generalization in deep learning, and lays the foundation for future research in this direction.
The Role of Momentum Parameters in the Optimal Convergence of Adaptive Polyak's Heavy-ball Methods
Wei Tao · sheng long · Gaowei Wu · Qing Tao
The adaptive stochastic gradient descent (SGD) with momentum has been widely adopted in deep learning as well as convex optimization. In practice, the last iterate is commonly used as the final solution. However, the available regret analysis and the setting of constant momentum parameters only guarantee the optimal convergence of the averaged solution. In this paper, we fill this theory-practice gap by investigating the convergence of the last iterate (referred to as {\it individual convergence}), which is a more difficult task than convergence analysis of the averaged solution. Specifically, in the constrained convex cases, we prove that the adaptive Polyak's Heavy-ball (HB) method, in which the step size is only updated using the exponential moving average strategy, attains an individual convergence rate of $O(\frac{1}{\sqrt{t}})$, as opposed to that of $O(\frac{\log t}{\sqrt {t}})$ of SGD, where $t$ is the number of iterations. Our new analysis not only shows how the HB momentum and its time-varying weight help us to achieve the acceleration in convex optimization but also gives valuable hints how the momentum parameters should be scheduled in deep learning. Empirical results validate the correctness of our convergence analysis in optimizing convex functions and demonstrate the improved performance of the adaptive HB methods in training deep networks.
Empirical risk minimization (ERM) is typically designed to perform well on the average loss, which can result in estimators that are sensitive to outliers, generalize poorly, or treat subgroups unfairly. While many methods aim to address these problems individually, in this work, we explore them through a unified framework---tilted empirical risk minimization (TERM). In particular, we show that it is possible to flexibly tune the impact of individual losses through a straightforward extension to ERM using a hyperparameter called the tilt. We provide several interpretations of the resulting framework: We show that TERM can increase or decrease the influence of outliers, respectively, to enable fairness or robustness; has variance-reduction properties that can benefit generalization; and can be viewed as a smooth approximation to a superquantile method. We develop batch and stochastic first-order optimization methods for solving TERM, and show that the problem can be efficiently solved relative to common alternatives. Finally, we demonstrate that TERM can be used for a multitude of applications, such as enforcing fairness between subgroups, mitigating the effect of outliers, and handling class imbalance. TERM is not only competitive with existing solutions tailored to these individual problems, but can also enable entirely new applications, such as simultaneously addressing outliers and promoting fairness.
Undistillable: Making A Nasty Teacher That CANNOT teach students
Haoyu Ma · Tianlong Chen · Ting-Kuei Hu · Chenyu You · Xiaohui Xie · Zhangyang Wang
Knowledge Distillation (KD) is a widely used technique to transfer knowledge from pre-trained teacher models to (usually more lightweight) student models. However, in certain situations, this technique is more of a curse than a blessing. For instance, KD poses a potential risk of exposing intellectual properties (IPs): even if a trained machine learning model is released in ``black boxes'' (e.g., as executable software or APIs without open-sourcing code), it can still be replicated by KD through imitating input-output behaviors. To prevent this unwanted effect of KD, this paper introduces and investigates a concept called $\textit{Nasty Teacher}$: a specially trained teacher network that yields nearly the same performance as a normal one, but would significantly degrade the performance of student models learned by imitating it. We propose a simple yet effective algorithm to build the nasty teacher, called $\textit{self-undermining knowledge distillation}$. Specifically, we aim to maximize the difference between the output of the nasty teacher and a normal pre-trained network. Extensive experiments on several datasets demonstrate that our method is effective on both standard KD and data-free KD, providing the desirable KD-immunity to model owners for the first time. We hope our preliminary study can draw more awareness and interest in this new practical problem of both social and legal importance. Our codes and pre-trained models can be found at: $\url{https://github.com/VITA-Group/Nasty-Teacher}$.
Unlearnable Examples: Making Personal Data Unexploitable
Hanxun Huang · Xingjun Ma · Sarah Erfani · James Bailey · Yisen Wang
The volume of "free" data on the internet has been key to the current success of deep learning. However, it also raises privacy concerns about the unauthorized exploitation of personal data for training commercial models. It is thus crucial to develop methods to prevent unauthorized data exploitation. This paper raises the question: can data be made unlearnable for deep learning models? We present a type of error-minimizing noise that can indeed make training examples unlearnable. Error-minimizing noise is intentionally generated to reduce the error of one or more of the training example(s) close to zero, which can trick the model into believing there is "nothing" to learn from these example(s). The noise is restricted to be imperceptible to human eyes, and thus does not affect normal data utility. We empirically verify the effectiveness of error-minimizing noise in both sample-wise and class-wise forms. We also demonstrate its flexibility under extensive experimental settings and practicability in a case study of face recognition. Our work establishes an important first step towards making personal data unexploitable to deep learning models.
UPDeT: Universal Multi-agent RL via Policy Decoupling with Transformers
Siyi Hu · Fengda Zhu · Xiaojun Chang · Xiaodan Liang
Recent advances in multi-agent reinforcement learning have been largely limited in training one model from scratch for every new task. The limitation is due to the restricted model architecture related to fixed input and output dimensions. This hinders the experience accumulation and transfer of the learned agent over tasks with diverse levels of difficulty (e.g. 3 vs 3 or 5 vs 6 multi-agent games). In this paper, we make the first attempt to explore a universal multi-agent reinforcement learning pipeline, designing one single architecture to fit tasks with the requirement of different observation and action configurations. Unlike previous RNN-based models, we utilize a transformer-based model to generate a flexible policy by decoupling the policy distribution from the intertwined input observation with an importance weight measured by the merits of the self-attention mechanism. Compared to a standard transformer block, the proposed model, named as Universal Policy Decoupling Transformer (UPDeT), further relaxes the action restriction and makes the multi-agent task's decision process more explainable. UPDeT is general enough to be plugged into any multi-agent reinforcement learning pipeline and equip them with strong generalization abilities that enables the handling of multiple tasks at a time. Extensive experiments on large-scale SMAC multi-agent competitive games demonstrate that the proposed UPDeT-based multi-agent reinforcement learning achieves significant results relative to state-of-the-art approaches, demonstrating advantageous transfer capability in terms of both performance and training speed (10 times faster).
VA-RED$^2$: Video Adaptive Redundancy Reduction
Bowen Pan · Rameswar Panda · Camilo L Fosco · Chung-Ching Lin · Alex J Andonian · Yue Meng · Kate Saenko · Aude Oliva · Rogerio Feris
Performing inference on deep learning models for videos remains a challenge due to the large amount of computational resources required to achieve robust recognition. An inherent property of real-world videos is the high correlation of information across frames which can translate into redundancy in either temporal or spatial feature maps of the models, or both. The type of redundant features depends on the dynamics and type of events in the video: static videos have more temporal redundancy while videos focusing on objects tend to have more channel redundancy. Here we present a redundancy reduction framework, termed VA-RED$^2$, which is input-dependent. Specifically, our VA-RED$^2$ framework uses an input-dependent policy to decide how many features need to be computed for temporal and channel dimensions. To keep the capacity of the original model, after fully computing the necessary features, we reconstruct the remaining redundant features from those using cheap linear operations. We learn the adaptive policy jointly with the network weights in a differentiable way with a shared-weight mechanism, making it highly efficient. Extensive experiments on multiple video datasets and different visual tasks show that our framework achieves $20\% - 40\%$ reduction in computation (FLOPs) when compared to state-of-the-art methods without any performance loss. Project page: http://people.csail.mit.edu/bpan/va-red/.
In this paper, we revisit variational intrinsic control (VIC), an unsupervised reinforcement learning method for finding the largest set of intrinsic options available to an agent. In the original work by Gregor et al. (2016), two VIC algorithms were proposed: one that represents the options explicitly, and the other that does it implicitly. We show that the intrinsic reward used in the latter is subject to bias in stochastic environments, causing convergence to suboptimal solutions. To correct this behavior, we propose two methods respectively based on the transitional probability model and Gaussian Mixture Model. We substantiate our claims through rigorous mathematical derivations and experimental analyses.
We present a hierarchical VAE that, for the first time, generates samples quickly $\textit{and}$ outperforms the PixelCNN in log-likelihood on all natural image benchmarks. We begin by observing that, in theory, VAEs can actually represent autoregressive models, as well as faster, better models if they exist, when made sufficiently deep. Despite this, autoregressive models have historically outperformed VAEs in log-likelihood. We test if insufficient depth explains why by scaling a VAE to greater stochastic depth than previously explored and evaluating it CIFAR-10, ImageNet, and FFHQ. In comparison to the PixelCNN, these very deep VAEs achieve higher likelihoods, use fewer parameters, generate samples thousands of times faster, and are more easily applied to high-resolution images. Qualitative studies suggest this is because the VAE learns efficient hierarchical visual representations. We release our source code and models at https://github.com/openai/vdvae.
WaveGrad: Estimating Gradients for Waveform Generation
Nanxin Chen · Yu Zhang · Heiga Zen · Ron Weiss · Mohammad Norouzi · William Chan
This paper introduces WaveGrad, a conditional model for waveform generation which estimates gradients of the data density. The model is built on prior work on score matching and diffusion probabilistic models. It starts from a Gaussian white noise signal and iteratively refines the signal via a gradient-based sampler conditioned on the mel-spectrogram. WaveGrad offers a natural way to trade inference speed for sample quality by adjusting the number of refinement steps, and bridges the gap between non-autoregressive and autoregressive models in terms of audio quality. We find that it can generate high fidelity audio samples using as few as six iterations. Experiments reveal WaveGrad to generate high fidelity audio, outperforming adversarial non-autoregressive baselines and matching a strong likelihood-based autoregressive baseline using fewer sequential operations. Audio samples are available at https://wavegrad.github.io/.
What are the Statistical Limits of Offline RL with Linear Function Approximation?
Ruosong Wang · Dean Foster · Sham M Kakade
Offline reinforcement learning seeks to utilize offline (observational) data to guide the learning of (causal) sequential decision making strategies. The hope is that offline reinforcement learning coupled with function approximation methods (to deal with the curse of dimensionality) can provide a means to help alleviate the excessive sample complexity burden in modern sequential decision making problems. However, the extent to which this broader approach can be effective is not well understood, where the literature largely consists of sufficient conditions.
This work focuses on the basic question of what are necessary representational and distributional conditions that permit provable sample-efficient offline reinforcement learning. Perhaps surprisingly, our main result shows that even if: i) we have realizability in that the true value function of \emph{every} policy is linear in a given set of features and 2) our off-policy data has good coverage over all features (under a strong spectral condition), any algorithm still (information-theoretically) requires a number of offline samples that is exponential in the problem horizon to non-trivially estimate the value of \emph{any} given policy. Our results highlight that sample-efficient offline policy evaluation is not possible unless significantly stronger conditions hold; such conditions include either having low distribution shift (where the offline data distribution is close to the distribution of the policy to be evaluated) or significantly stronger representational conditions (beyond realizability).
Why resampling outperforms reweighting for correcting sampling bias with stochastic gradients
Jing An · Lexing Ying · Yuhua Zhu
A data set sampled from a certain population is biased if the subgroups of the population are sampled at proportions that are significantly different from their underlying proportions. Training machine learning models on biased data sets requires correction techniques to compensate for the bias. We consider two commonly-used techniques, resampling and reweighting, that rebalance the proportions of the subgroups to maintain the desired objective function. Though statistically equivalent, it has been observed that resampling outperforms reweighting when combined with stochastic gradient algorithms. By analyzing illustrative examples, we explain the reason behind this phenomenon using tools from dynamical stability and stochastic asymptotics. We also present experiments from regression, classification, and off-policy prediction to demonstrate that this is a general phenomenon. We argue that it is imperative to consider the objective function design and the optimization algorithm together while addressing the sampling bias.