Skip to yearly menu bar Skip to main content


Session

Poster Session 3

MH1-2-3-4

Abstract:

Chat is not available.


Virtual presentation / poster accept
#43
Few-shot Backdoor Attacks via Neural Tangent Kernels

Jonathan Hayase · Sewoong Oh

In a backdoor attack, an attacker injects corrupted examples into the training set. The goal of the attacker is to cause the final trained model to predict the attacker's desired target label when a predefined trigger is added to test inputs. Central to these attacks is the trade-off between the success rate of the attack and the number of corrupted training examples injected. We pose this attack as a novel bilevel optimization problem: construct strong poison examples that maximize the attack success rate of the trained model. We use neural tangent kernels to approximate the training dynamics of the model being attacked and automatically learn strong poison examples. We experiment on subclasses of CIFAR-10 and ImageNet with WideResNet-34 and ConvNeXt architectures on periodic and patch trigger attacks and show that NTBA-designed poisoned examples achieve, for example, an attack success rate of 90% with ten times smaller number of poison examples injected compared to the baseline. We provided an interpretation of the NTBA-designed attacks using the analysis of kernel linear regression. We further demonstrate a vulnerability in overparametrized deep neural networks, which is revealed by the shape of the neural tangent kernel.


In-Person Poster presentation / poster accept
#38
Mid-Vision Feedback

Michael Maynord · Eadom Dessalene · Cornelia Fermuller · Yiannis Aloimonos

Feedback plays a prominent role in biological vision, where perception is modulated based on agents' evolving expectations and world model. We introduce a novel mechanism which modulates perception based on high level categorical expectations: Mid-Vision Feedback (MVF). MVF associates high level contexts with linear transformations. When a context is "expected" its associated linear transformation is applied over feature vectors in a mid level of a network. The result is that mid-level network representations are biased towards conformance with high level expectations, improving overall accuracy and contextual consistency. Additionally, during training mid-level feature vectors are biased through introduction of a loss term which increases the distance between feature vectors associated with different contexts. MVF is agnostic as to the source of contextual expectations, and can serve as a mechanism for top down integration of symbolic systems with deep vision architectures. We show the superior performance of MVF to post-hoc filtering for incorporation of contextual knowledge, and show superior performance of configurations using predicted context (when no context is known a priori) over configurations with no context awareness.


In-Person Poster presentation / poster accept
#57
Markup-to-Image Diffusion Models with Scheduled Sampling

Yuntian Deng · Noriyuki Kojima · Alexander M Rush

Building on recent advances in image generation, we present a fully data-driven approach to rendering markup into images. The approach is based on diffusion models, which parameterize the distribution of data using a sequence of denoising operations on top of a Gaussian noise distribution. We view the diffusion denoising process a sequential decision making process, and show that it exhibits compounding errors similar to exposure bias issues in imitation learning problems. To mitigate these issues, we adapt the scheduled sampling algorithm to diffusion training. We conduct experiments on four markup datasets: formulas (LaTeX), table layouts (HTML), sheet music (LilyPond), and molecular images (SMILES). These experiments each verify the effectiveness of diffusion and the use of scheduled sampling to fix generation issues. These results also show that the markup-to-image task presents a useful controlled compositional setting for diagnosing and analyzing generative image models.


In-Person Poster presentation / poster accept
#37
Language models are multilingual chain-of-thought reasoners

Freda Shi · Mirac Suzgun · Markus Freitag · Xuezhi Wang · Suraj Srivats · Soroush Vosoughi · Hyung Won Chung · Yi Tay · Sebastian Ruder · Denny Zhou · Dipanjan Das · Jason Wei

We evaluate the reasoning abilities of large language models in multilingual settings. We introduce the Multilingual Grade School Math (MGSM) benchmark, by manually translating 250 grade-school math problems from the GSM8K dataset (Cobbe et al., 2021) into ten typologically diverse languages. We find that the ability to solve MGSM problems via chain-of-thought prompting emerges with increasing model scale, and that models have strikingly strong multilingual reasoning abilities, even in underrepresented languages such as Bengali and Swahili. Finally, we show that multilingual reasoning abilities of language models extend to other tasks such as commonsense reasoning and word-in-context semantic judgment. The MGSM benchmark is publicly available at AnonymousLink and the supplementary material.


In-Person Poster presentation / poster accept
#56
Language Models Can Teach Themselves to Program Better

Patrick Haluptzok · Matthew Bowers · Adam Tauman Kalai

Recent Language Models (LMs) achieve breakthrough performance in code generation when trained on human-authored problems, even solving some competitive-programming problems. Self-play has proven useful in games such as Go, and thus it is natural to ask whether LMs can generate their own instructive programming problems to improve their performance. We show that it is possible for an LM to synthesize programming problems and solutions, which are filtered for correctness by a Python interpreter. The LM’s performance is then seen to improve when it is fine-tuned on its own synthetic problems and verified solutions; thus the model “improves itself” using the Python interpreter. Problems are specified formally as programming puzzles [Schuster et al. , 2021], a code-based problem format where solutions can easily be verified for correctness by execution. In experiments on publicly-available LMs, test accuracy more than doubles. This work demonstrates the potential for code LMs, with an interpreter, to generate instructive problems and improve their own performance.


In-Person Poster presentation / poster accept
#36
A Non-monotonic Self-terminating Language Model

Eugene Choi · Kyunghyun Cho · Cheolhyoung Lee

Recent large-scale neural autoregressive sequence models have shown impressive performances on a variety of natural language generation tasks. However, their generated sequences often exhibit degenerate properties such as non-termination, undesirable repetition, and premature termination, when generated with decoding algorithms such as greedy search, beam search, top-$k$ sampling, and nucleus sampling. In this paper, we focus on the problem of non-terminating sequences resulting from an incomplete decoding algorithm. We first define an incomplete probable decoding algorithm which includes greedy search, top-$k$ sampling, and nucleus sampling, beyond the incomplete decoding algorithm originally put forward by Welleck et al. (2020). We then propose a non-monotonic self-terminating language model, which significantly relaxes the constraint of monotonically increasing termination probability in the originally proposed self-terminating language model by Welleck et al. (2020), to address the issue of non-terminating sequences when using incomplete probable decoding algorithms. We prove that our proposed model prevents non-terminating sequences when using not only incomplete probable decoding algorithms but also beam search. We empirically validate our model on sequence completion tasks with various architectures.


In-Person Poster presentation / poster accept
#55
DiffusER: Diffusion via Edit-based Reconstruction

Machel Reid · Vincent Hellendoorn · Graham Neubig

In text generation, models that generate text from scratch one token at a time are currently the dominant paradigm. Despite being performant, these models lack the ability to revise existing text, which limits their usability in many practical scenarios. We look to address this, with DiffusER (Diffusion via Edit-based Reconstruction), a new edit-based generative model for text based on denoising diffusion models -- a class of models that use a Markov chain of denoising steps to incrementally generate data. DiffusER is not only a strong generative model in general, rivalling autoregressive models on several tasks spanning machine translation, summarization, and style transfer; it can also perform other varieties of generation that standard autoregressive models are not well-suited for. For instance, we demonstrate that DiffusER makes it possible for a user to condition generation on a prototype, or an incomplete sequence, and continue revising based on previous edit steps.


In-Person Poster presentation / poster accept
#35
Understanding Embodied Reference with Touch-Line Transformer

Yang Li · Xiaoxue Chen · Hao Zhao · Jiangtao Gong · Guyue Zhou · Federico Rossano · Yixin Zhu

We study embodied reference understanding, the task of locating referents using embodied gestural signals and language references. Human studies have revealed that, contrary to popular belief, objects referred to or pointed to do not lie on the elbow-wrist line, but rather on the so-called virtual touch line. Nevertheless, contemporary human pose representations lack the virtual touch line. To tackle this problem, we devise the touch-line Transformer: It takes as input tokenized visual and textual features and simultaneously predicts the referent’s bounding box and a touch-line vector. Leveraging this touch-line prior, we further devise a geometric consistency loss that promotes co-linearity between referents and touch lines. Using the touch line as gestural information dramatically improves model performances: Experiments on the YouRefIt dataset demonstrate that our method yields a +25.0% accuracy improvement under the 0.75 IoU criterion, hence closing 63.6% of the performance difference between models and humans. Furthermore, we computationally validate prior human studies by demonstrating that computational models more accurately locate referents when employing the virtual touch line than when using the elbow-wrist line.


In-Person Poster presentation / poster accept
#54
Rethinking Self-Supervised Visual Representation Learning in Pre-training for 3D Human Pose and Shape Estimation

Hongsuk Choi · Hyeongjin Nam · Taeryung Lee · Gyeongsik Moon · Kyoung Mu Lee

Recently, a few self-supervised representation learning (SSL) methods have outperformed the ImageNet classification pre-training for vision tasks such as object detection. However, its effects on 3D human body pose and shape estimation (3DHPSE) are open to question, whose target is fixed to a unique class, the human, and has an inherent task gap with SSL. We empirically study and analyze the effects of SSL and further compare it with other pre-training alternatives for 3DHPSE. The alternatives are 2D annotation-based pre-training and synthetic data pre-training, which share the motivation of SSL that aims to reduce the labeling cost. They have been widely utilized as a source of weak-supervision or fine-tuning, but have not been remarked as a pre-training source. SSL methods underperform the conventional ImageNet classification pre-training on multiple 3DHPSE benchmarks by 7.7% on average. In contrast, despite a much less amount of pre-training data, the 2D annotation-based pre-training improves accuracy on all benchmarks and shows faster convergence during fine-tuning. Our observations challenge the naive application of the current SSL pre-training to 3DHPSE and relight the value of other data types in the pre-training aspect.


In-Person Poster presentation / poster accept
#34
Active Image Indexing

Pierre Fernandez · Matthijs Douze · Herve Jegou · Teddy Furon

Image copy detection and retrieval from large databases leverage two components. First, a neural network maps an image to a vector representation, that is relatively robust to various transformations of the image. Second, an efficient but approximate similarity search algorithm trades scalability (size and speed) against quality of the search, thereby introducing a source of error. This paper improves the robustness of image copy detection with active indexing, that optimizes the interplay of these two components. We reduce the quantization loss of a given image representation by making imperceptible changes to the image before its release. The loss is back-propagated through the deep neural network back to the image, under perceptual constraints. These modifications make the image more retrievable. Our experiments show that the retrieval and copy detection of activated images is significantly improved. For instance, activation improves by $+40\%$ the Recall1@1 on various image transformations, and for several popular indexing structures based on product quantization and locality sensitivity hashing.


In-Person Poster presentation / poster accept
#53
Voint Cloud: Multi-View Point Cloud Representation for 3D Understanding

Abdullah Hamdi · Silvio Giancola · Bernard Ghanem

Multi-view projection methods have demonstrated promising performance on 3D understanding tasks like 3D classification and segmentation. However, it remains unclear how to combine such multi-view methods with the widely available 3D point clouds. Previous methods use unlearned heuristics to combine features at the point level. To this end, we introduce the concept of the multi-view point cloud (Voint cloud), representing each 3D point as a set of features extracted from several view-points. This novel 3D Voint cloud representation combines the compactness of 3D point cloud representation with the natural view-awareness of multi-view representation. Naturally, we can equip this new representation with convolutional and pooling operations. We deploy a Voint neural network (VointNet) to learn representations in the Voint space. Our novel representation achieves state-of-the-art performance on 3D classification, shape retrieval, and robust 3D part segmentation on standard benchmarks ( ScanObjectNN, ShapeNet Core55, and ShapeNet Parts). Further analysis shows that VointNet improves the robustness to occlusion compared to other methods.


In-Person Poster presentation / poster accept
#33
Edge Guided GANs with Contrastive Learning for Semantic Image Synthesis

Hao Tang · XIAOJUAN QI · Guolei Sun · Dan Xu · Nicu Sebe · Radu Timofte · Luc Van Gool

We propose a novel \underline{e}dge guided \underline{g}enerative \underline{a}dversarial \underline{n}etwork with \underline{c}ontrastive learning (ECGAN) for the challenging semantic image synthesis task. Although considerable improvement has been achieved, the quality of synthesized images is far from satisfactory due to three largely unresolved challenges. 1) The semantic labels do not provide detailed structural information, making it difficult to synthesize local details and structures. 2) The widely adopted CNN operations such as convolution, down-sampling, and normalization usually cause spatial resolution loss and thus cannot fully preserve the original semantic information, leading to semantically inconsistent results (e.g., missing small objects). 3) Existing semantic image synthesis methods focus on modeling local'' semantic information from a single input semantic layout. However, they ignoreglobal'' semantic information of multiple input semantic layouts, i.e., semantic cross-relations between pixels across different input layouts. To tackle 1), we propose to use edge as an intermediate representation which is further adopted to guide image generation via a proposed attention guided edge transfer module. Edge information is produced by a convolutional generator and introduces detailed structure information. To tackle 2), we design an effective module to selectively highlight class-dependent feature maps according to the original semantic layout to preserve the semantic information. To tackle 3), inspired by current methods in contrastive learning, we propose a novel contrastive learning method, which aims to enforce pixel embeddings belonging to the same semantic class to generate more similar image content than those from different classes. Doing so can capture more semantic relations by explicitly exploring the structures of labeled pixels from multiple input semantic layouts. Experiments on three challenging datasets show that our ECGAN achieves significantly better results than state-of-the-art methods.


In-Person Poster presentation / poster accept
#52
Agent-based Graph Neural Networks

Karolis Martinkus · Pál András Papp · Benedikt Schesch · Roger Wattenhofer

We present a novel graph neural network we call AgentNet, which is designed specifically for graph-level tasks. AgentNet is inspired by sublinear algorithms, featuring a computational complexity that is independent of the graph size. The architecture of AgentNet differs fundamentally from the architectures of traditional graph neural networks. In AgentNet, some trained \textit{neural agents} intelligently walk the graph, and then collectively decide on the output. We provide an extensive theoretical analysis of AgentNet: We show that the agents can learn to systematically explore their neighborhood and that AgentNet can distinguish some structures that are even indistinguishable by 2-WL. Moreover, AgentNet is able to separate any two graphs which are sufficiently different in terms of subgraphs. We confirm these theoretical results with synthetic experiments on hard-to-distinguish graphs and real-world graph classification tasks. In both cases, we compare favorably not only to standard GNNs but also to computationally more expensive GNN extensions.


In-Person Poster presentation / poster accept
#32
Limitless Stability for Graph Convolutional Networks

Christian Koke

This work establishes rigorous, novel and widely applicable stability guarantees and transferability bounds for general graph convolutional networks -- without reference to any underlying limit object or statistical distribution. Crucially, utilized graph-shift operators are not necessarily assumed to be normal, allowing for the treatment of networks on both directed- and undirected graphs within the developed framework. In the undirected setting, stability to node-level perturbations is related to an 'adequate spectral covering' property of the filters in each layer. Stability to edge-level perturbations is discussed and related to properties of the utilized filters such as their Lipschitz constants. Results on stability to vertex-set non-preserving perturbations are obtained by utilizing recently developed mathematical-physics based tools. As an exemplifying application of the developed theory, it is showcased thatgeneral graph convolutional networks utilizing the un-normalized graph Laplacian as graph-shift-operator can be rendered stable to collapsing strong edges in the underlying graph if filters are mandated to be constant at infinity. These theoretical results are supported by corresponding numerical investigations showcasing the response of filters and networks to such perturbations.


In-Person Poster presentation / top 25% paper
#51
The Asymmetric Maximum Margin Bias of Quasi-Homogeneous Neural Networks

Daniel Kunin · Atsushi Yamamura · Chao Ma · Surya Ganguli

In this work, we explore the maximum-margin bias of quasi-homogeneous neural networks trained with gradient flow on an exponential loss and past a point of separability. We introduce the class of quasi-homogeneous models, which is expressive enough to describe nearly all neural networks with homogeneous activations, even those with biases, residual connections, and normalization layers, while structured enough to enable geometric analysis of its gradient dynamics. Using this analysis, we generalize the existing results of maximum-margin bias for homogeneous networks to this richer class of models. We find that gradient flow implicitly favors a subset of the parameters, unlike in the case of a homogeneous model where all parameters are treated equally. We demonstrate through simple examples how this strong favoritism toward minimizing an asymmetric norm can degrade the robustness of quasi-homogeneous models. On the other hand, we conjecture that this norm-minimization discards, when possible, unnecessary higher-order parameters, reducing the model to a sparser parameterization. Lastly, by applying our theorem to sufficiently expressive neural networks with normalization layers, we reveal a universal mechanism behind the empirical phenomenon of Neural Collapse.


In-Person Poster presentation / top 5% paper
#31
Outstanding Paper
Rethinking the Expressive Power of GNNs via Graph Biconnectivity

Bohang Zhang · Shengjie Luo · Liwei Wang · Di He

Designing expressive Graph Neural Networks (GNNs) is a central topic in learning graph-structured data. While numerous approaches have been proposed to improve GNNs with respect to the Weisfeiler-Lehman (WL) test, for most of them, there is still a lack of deep understanding of what additional power they can systematically and provably gain. In this paper, we take a fundamentally different perspective to study the expressive power of GNNs beyond the WL test. Specifically, we introduce a novel class of expressivity metrics via graph biconnectivity and highlight their importance in both theory and practice. As biconnectivity can be easily calculated using simple algorithms that have linear computational costs, it is natural to expect that popular GNNs can learn it easily as well. However, after a thorough review of prior GNN architectures, we surprisingly find that most of them are not expressive for any of these metrics. The only exception is the ESAN framework (Bevilacqua et al., 2022), for which we give a theoretical justification of its power. We proceed to introduce a principled and more efficient approach, called the Generalized Distance Weisfeiler-Lehman (GD-WL), which is provably expressive for all biconnectivity metrics. Practically, we show GD-WL can be implemented by a Transformer-like architecture that preserves expressiveness and enjoys full parallelizability. A set of experiments on both synthetic and real datasets demonstrates that our approach can consistently outperform prior GNN architectures.


In-Person Poster presentation / poster accept
#50
Anti-Symmetric DGN: a stable architecture for Deep Graph Networks

Alessio Gravina · Davide Bacciu · Claudio Gallicchio

Deep Graph Networks (DGNs) currently dominate the research landscape of learning from graphs, due to their efficiency and ability to implement an adaptive message-passing scheme between the nodes. However, DGNs are typically limited in their ability to propagate and preserve long-term dependencies between nodes, i.e., they suffer from the over-squashing phenomena. As a result, we can expect them to under-perform, since different problems require to capture interactions at different (and possibly large) radii in order to be effectively solved. In this work, we present Anti-Symmetric Deep Graph Networks (A-DGNs), a framework for stable and non-dissipative DGN design, conceived through the lens of ordinary differential equations. We give theoretical proof that our method is stable and non-dissipative, leading to two key results: long-range information between nodes is preserved, and no gradient vanishing or explosion occurs in training. We empirically validate the proposed approach on several graph benchmarks, showing that A-DGN yields to improved performance and enables to learn effectively even when dozens of layers are used.


In-Person Poster presentation / top 25% paper
#30
ACMP: Allen-Cahn Message Passing with Attractive and Repulsive Forces for Graph Neural Networks

Yuelin Wang · Kai Yi · Xinliang Liu · Yuguang Wang · Shi Jin

Neural message passing is a basic feature extraction unit for graph-structured data considering neighboring node features in network propagation from one layer to the next. We model such process by an interacting particle system with attractive and repulsive forces and the Allen-Cahn force arising in the modeling of phase transition. The dynamics of the system is a reaction-diffusion process which can separate particles without blowing up. This induces an Allen-Cahn message passing (ACMP) for graph neural networks where the numerical iteration for the particle system solution constitutes the message passing propagation. ACMP which has a simple implementation with a neural ODE solver can propel the network depth up to one hundred of layers with theoretically proven strictly positive lower bound of the Dirichlet energy. It thus provides a deep model of GNNs circumventing the common GNN problem of oversmoothing. GNNs with ACMP achieve state of the art performance for real-world node classification tasks on both homophilic and heterophilic datasets. Codes are available at https://github.com/ykiiiiii/ACMP


In-Person Poster presentation / poster accept
#49
LilNetX: Lightweight Networks with EXtreme Model Compression and Structured Sparsification

Sharath Girish · Kamal Gupta · Saurabh Singh · Abhinav Shrivastava

We introduce LilNetX, an end-to-end trainable technique for neural networks that enables learning models with specified accuracy-rate-computation trade-off. Prior works approach these problems one at a time and often require post-processing or multistage training which become less practical and do not scale very well for large datasets or architectures. Our method constructs a joint training objective that penalizes the self information of network parameters in a latent representation space to encourage small model size while also introducing priors to increase structured sparsity in the parameter space to reduce computation. When compared with existing state-of-the-art model compression methods, we achieve up to 50% smaller model size and 98% model sparsity on ResNet-20 on the CIFAR-10 dataset as well as 37% smaller model size and 71% structured sparsity on ResNet-50 trained on ImageNet while retaining the same accuracy as those methods. We show that the resulting sparsity can improve the inference time of the models by almost 1.8 times the dense ResNet-50 baseline model. Code is available at https://github.com/Sharath-girish/LilNetX.


In-Person Poster presentation / top 25% paper
#29
Unmasking the Lottery Ticket Hypothesis: What's Encoded in a Winning Ticket's Mask?

Mansheej Paul · Feng Chen · Brett Larsen · Jonathan Frankle · Surya Ganguli · Gintare Karolina Dziugaite

As neural networks get larger and costlier, it is important to find sparse networks that require less compute and memory but can be trained to the same accuracy as the full network (i.e. matching). Iterative magnitude pruning (IMP) is a state of the art algorithm that can find such highly sparse matching subnetworks, known as winning tickets. IMP iterates through cycles of training, pruning a fraction of smallest magnitude weights, rewinding unpruned weights back to an early training point, and repeating. Despite its simplicity, the principles underlying when and how IMP finds winning tickets remain elusive. In particular, what useful information does an IMP mask found at the end of training convey to a rewound network near the beginning of training? How does SGD allow the network to extract this information? And why is iterative pruning needed, i.e. why can't we prune to very high sparsities in one shot? We investigate these questions through the lens of the geometry of the error landscape. First, we find that—at higher sparsities—pairs of pruned networks at successive pruning iterations are connected by a linear path with zero error barrier if and only if they are matching. This indicates that masks found at the end of training convey to the rewind point the identity of an axial subspace that intersects a desired linearly connected mode of a matching sublevel set. Second, we show SGD can exploit this information due to a strong form of robustness: it can return to this mode despite strong perturbations early in training. Third, we show how the flatness of the error landscape at the end of training limits the fraction of weights that can be pruned at each iteration of IMP. This analysis yields a new quantitative link between IMP performance and the Hessian eigenspectrum. Finally, we show that the role of retraining in IMP is to find a network with new small weights to prune. Overall, these results make progress toward demystifying the existence of winning tickets by revealing the fundamental role of error landscape geometry in the algorithms used to find them.


In-Person Poster presentation / top 25% paper
#48
QuAnt: Quantum Annealing with Learnt Couplings

Marcel Seelbach Benkner · Maximilian Krahn · Edith Tretschk · Zorah Lähner · Michael Moeller · Vladislav Golyanik

Modern quantum annealers can find high-quality solutions to combinatorial optimisation objectives given as quadratic unconstrained binary optimisation (QUBO) problems. Unfortunately, obtaining suitable QUBO forms in computer vision remains challenging and currently requires problem-specific analytical derivations. Moreover, such explicit formulations impose tangible constraints on solution encodings. In stark contrast to prior work, this paper proposes to learn QUBO forms from data through gradient backpropagation instead of deriving them. As a result, the solution encodings can be chosen flexibly and compactly. Furthermore, our methodology is general and virtually independent of the specifics of the target problem type. We demonstrate the advantages of learnt QUBOs on the diverse problem types of graph matching, 2D point cloud alignment and 3D rotation estimation. Our results are competitive with the previous quantum state of the art while requiring much fewer logical and physical qubits, enabling our method to scale to larger problems. The code and the new dataset are available at https://4dqv.mpi-inf.mpg.de/QuAnt/.


In-Person Poster presentation / poster accept
#28
TANGOS: Regularizing Tabular Neural Networks through Gradient Orthogonalization and Specialization

Alan Jeffares · Tennison Liu · Jonathan Crabbé · Fergus Imrie · Mihaela van der Schaar

Despite their success with unstructured data, deep neural networks are not yet a panacea for structured tabular data. In the tabular domain, their efficiency crucially relies on various forms of regularization to prevent overfitting and provide strong generalization performance. Existing regularization techniques include broad modelling decisions such as choice of architecture, loss functions, and optimization methods. In this work, we introduce Tabular Neural Gradient Orthogonalization and Specialization (TANGOS), a novel framework for regularization in the tabular setting built on latent unit attributions. The gradient attribution of an activation with respect to a given input feature suggests how the neuron attends to that feature, and is often employed to interpret the predictions of deep networks. In TANGOS, we take a different approach and incorporate neuron attributions directly into training to encourage orthogonalization and specialization of latent attributions in a fully-connected network. Our regularizer encourages neurons to focus on sparse, non-overlapping input features and results in a set of diverse and specialized latent units. In the tabular domain, we demonstrate that our approach can lead to improved out-of-sample generalization performance, outperforming other popular regularization methods. We provide insight into why our regularizer is effective and demonstrate that TANGOS can be applied jointly with existing methods to achieve even greater generalization performance.


In-Person Poster presentation / poster accept
#47
Treeformer: Dense Gradient Trees for Efficient Attention Computation

Lovish Madaan · Srinadh Bhojanapalli · Himanshu Jain · Prateek Jain

Standard inference and training with transformer based architectures scale quadratically with input sequence length. This is prohibitively large for a variety of applications especially in web-page translation, query-answering etc. Consequently, several approaches have been developed recently to speedup attention computation by enforcing different attention structures such as sparsity, low-rank, approximating attention using kernels. In this work, we view attention computation as that of nearest neighbor retrieval, and use decision tree based hierarchical navigation to reduce the retrieval cost per query token from linear in sequence length to nearly logarithmic. Based on such hierarchical navigation, we design Treeformer which can use one of two efficient attention layers -- TF-Attention and TC-Attention. TF-Attention computes the attention in a fine-grained style, while TC-Attention is a coarse attention layer which also ensures that the gradients are "dense". To optimize such challenging discrete layers, we propose a two-level bootstrapped training method. Using extensive experiments on standard NLP benchmarks, especially for long-sequences, we demonstrate that our Treeformer architecture can be almost as accurate as baseline Transformer while using 30x lesser FLOPs in the attention layer. Compared to Linformer, the accuracy can be as much as 12% higher while using similar FLOPs in the attention layer.


In-Person Poster presentation / poster accept
#27
Latent Bottlenecked Attentive Neural Processes

Leo Feng · Hossein Hajimirsadeghi · Yoshua Bengio · Mohamed Osama Ahmed

Neural Processes (NPs) are popular methods in meta-learning that can estimate predictive uncertainty on target datapoints by conditioning on a context dataset. Previous state-of-the-art method Transformer Neural Processes (TNPs) achieve strong performance but require quadratic computation with respect to the number of context datapoints, significantly limiting its scalability. Conversely, existing sub-quadratic NP variants perform significantly worse than that of TNPs. Tackling this issue, we propose Latent Bottlenecked Attentive Neural Processes (LBANPs), a new computationally efficient sub-quadratic NP variant, that has a querying computational complexity independent of the number of context datapoints. The model encodes the context dataset into a constant number of latent vectors on which self-attention is performed. When making predictions, the model retrieves higher-order information from the context dataset via multiple cross-attention mechanisms on the latent vectors. We empirically show that LBANPs achieve results competitive with the state-of-the-art on meta-regression, image completion, and contextual multi-armed bandits. We demonstrate that LBANPs can trade-off the computational cost and performance according to the number of latent vectors. Finally, we show LBANPs can scale beyond existing attention-based NP variants to larger dataset settings.


In-Person Poster presentation / poster accept
#46
The Onset of Variance-Limited Behavior for Networks in the Lazy and Rich Regimes

Alexander Atanasov · Blake Bordelon · Sabarish Sainathan · Cengiz Pehlevan

For small training set sizes $P$, the generalization error of wide neural networks is well-approximated by the error of an infinite width neural network (NN), either in the kernel or mean-field/feature-learning regime. However, after a critical sample size $P^*$, we empirically find the finite-width network generalization becomes worse than that of the infinite width network. In this work, we empirically study the transition from infinite-width behavior to this \textit{variance-limited} regime as a function of sample size $P$ and network width $N$. We find that finite-size effects can become relevant for very small dataset sizes on the order of $P^* \sim \sqrt{N}$ for polynomial regression with ReLU networks. We discuss the source of these effects using an argument based on the variance of the NN's final neural tangent kernel (NTK). This transition can be pushed to larger $P$ by enhancing feature learning or by ensemble averaging the networks. We find that the learning curve for regression with the final NTK is an accurate approximation of the NN learning curve. Using this, we provide a toy model which also exhibits $P^* \sim \sqrt{N}$ scaling and has $P$-dependent benefits from feature learning.


In-Person Poster presentation / top 25% paper
#26
Multi-lingual Evaluation of Code Generation Models

Ben Athiwaratkun · Sanjay Krishna Gouda · Zijian Wang · Xiaopeng Li · YUCHEN TIAN · Ming Tan · Wasi Ahmad · Shiqi Wang · Qing Sun · Mingyue Shang · Sujan Kumar Gonugondla · Hantian Ding · Varun Kumar · Nathan Fulton · Arash Farahani · Siddhartha Jain · Robert Giaquinto · Haifeng Qian · Murali Krishna Ramanathan · Ramesh Nallapati · Baishakhi Ray · Parminder Bhatia · Sudipta Sengupta · Dan Roth · Bing Xiang

We present two new benchmarks, MBXP and Multilingual HumanEval, designed to evaluate code completion models in over 10 programming languages. These datasets are generated using a conversion framework that transpiles prompts and test cases from the original MBPP and HumanEval datasets into the corresponding data in the target language. By using these benchmarks, we are able to assess the performance of code generation models in a multi-lingual fashion, and discovered generalization ability of language models on out-of-domain languages, advantages of multi-lingual models over mono-lingual, the ability of few-shot prompting to teach the model new languages, and zero-shot translation abilities. In addition, we use our code generation model to perform large-scale bootstrapping to obtain synthetic canonical solutions in several languages, which can be used for other code-related evaluations such as code insertion, robustness, or summarization tasks.


In-Person Poster presentation / poster accept
#25
DFPC: Data flow driven pruning of coupled channels without data.

Tanay Narshana · Chaitanya Murti · Chiranjib Bhattacharyya

Modern, multi-branched neural network architectures often possess complex interconnections between layers, which we call coupled channels (CCs). Structured pruning of CCs in these multi-branch networks is an under-researched problem, as most existing works are typically designed for pruning single-branch models like VGG-nets. While these methods yield accurate subnetworks, the improvements in inference times when applied to multi-branch networks are comparatively modest, as these methods do not prune CCs, which we observe contribute significantly to inference time. For instance, layers with CCs as input or output take more than 66% of the inference time in ResNet-50. Moreover, pruning in the data-free regime, where data is not used for pruning, is gaining traction owing to privacy concerns and computational costs associated with fine-tuning. Motivated by this, we study the problem of pruning CCs in the data-free regime. To facilitate the development of algorithms to prune CCs, we define Data Flow Couplings (DFCs) to enumerate the layers that constitute coupled connections and the associated transformation. Additionally, saliencies for pruning CCs cannot be gauged in isolation, as there may be discrepancies among the layerwise importance of CCs using conventional scoring strategies. This necessitates finding grouped saliencies to gauge the importance of all corresponding coupled elements in a network. We thus propose the Backwards Graph-based Saliency Computation (BGSC) algorithm, a data-free method that computes saliencies by estimating an upper bound to the reconstruction error of intermediate layers; we call this pruning strategy Data Flow driven Pruning of Coupled channels (DFPC). Finally, we show the efficacy of DFPC for models trained on standard datasets. Since we pruned coupled channels, we achieve up to 1.66x improvements in inference time for ResNet-101 trained on CIFAR-10 with a 5% accuracy drop without fine-tuning. With access to the ImageNet training set, we achieve significant improvements over the data-free method and see an improvement of at least 47.1% in speedup for a 2.3% accuracy drop for ResNet-50 against our baselines.


In-Person Poster presentation / top 5% paper
#44
The Lie Derivative for Measuring Learned Equivariance

Nate Gruver · Marc A Finzi · Micah Goldblum · Andrew Wilson

Equivariance guarantees that a model's predictions capture key symmetries in data. When an image is translated or rotated, an equivariant model's representation of that image will translate or rotate accordingly. The success of convolutional neural networks has historically been tied to translation equivariance directly encoded in their architecture. The rising success of vision transformers, which have no explicit architectural bias towards equivariance, challenges this narrative and suggests that augmentations and training data might also play a significant role in their performance. In order to better understand the role of equivariance in recent vision models, we apply the Lie derivative, a method for measuring equivariance with strong mathematical foundations and minimal hyperparameters. Using the Lie derivative, we study the equivariance properties of hundreds of pretrained models, spanning CNNs, transformers, and Mixer architectures. The scale of our analysis allows us to separate the impact of architecture from other factors like model size or training method. Surprisingly, we find that many violations of equivariance can be linked to spatial aliasing in ubiquitous network layers, such as pointwise non-linearities, and that as models get larger and more accurate they tend to display more equivariance, regardless of architecture. For example, transformers can be more equivariant than convolutional neural networks after training.


In-Person Poster presentation / poster accept
#24
DINO: DETR with Improved DeNoising Anchor Boxes for End-to-End Object Detection

Hao Zhang · Feng Li · Shilong Liu · Lei Zhang · Hang Su · Jun Zhu · Lionel Ni · Heung-Yeung Shum

We present DINO (DETR with Improved deNoising anchOr boxes), a strong end-to-end object detector. DINO improves over previous DETR-like models in performance and efficiency by using a contrastive way for denoising training, a look forward twice scheme for box prediction, and a mixed query selection method for anchor initialization. DINO achieves 49.4AP in 12 epochs and 51.3AP in 24 epochs on COCO with a ResNet-50 backbone and multi-scale features, yielding a significant improvement of +6.0AP and +2.7AP, respectively, compared to DN-DETR, the previous best DETR-like model. DINO scales well in both model size and data size. Without bells and whistles, after pre-training on the Objects365 dataset with a SwinL backbone, DINO obtains the best results on both COCO val2017 (63.2AP) and test-dev (63.3AP) with model size under 1 billion parameters. Compared to other models on the leaderboard, DINO significantly reduces its model size and pre-training data size while achieving better results. The code will be available.


In-Person Poster presentation / top 25% paper
#23
Sparse MoE as the New Dropout: Scaling Dense and Self-Slimmable Transformers

Tianlong Chen · Zhenyu Zhang · AJAY JAISWAL · Shiwei Liu · Zhangyang Wang

Despite their remarkable achievement, gigantic transformers encounter significant drawbacks, including exorbitant computational and memory footprints during training, as well as severe collapse evidenced by a high degree of parameter redundancy. Sparsely-activated Mixture-of-Experts (SMoEs) have shown promise to mitigate the issue of training efficiency, yet they are prone to (1) $\textit{redundant experts}$ due to representational collapse; and (2) $\textit{poor expert scalability for inference and downstream fine-tuning}$, primarily due to overfitting of the learned routing policy to the number of activated experts during training. As recent research efforts are predominantly focused on improving routing policies to encourage expert specializations, this work focuses on $\textit{exploring the overlooked scalability bottleneck of SMoEs}$ and leveraging it to effectively $\textbf{scale dense transformers}$. To this end, we propose a new plug-and-play training framework, $\textbf{SMoE-Dropout}$, to enable scaling transformers to better accuracy in their full capacity without collapse. Specifically, SMoE-Dropout consists of a $\textit{randomly initialized and fixed}$ router network to activate experts and gradually increases the activated expert number as training progresses over time. Transformers trained by SMoE-Dropout naturally exhibit a $\textbf{``self-slimmable”}$ property subject to resource availability, offering smooth and consistent performance boosts with an increase in activated experts during inference or fine-tuning. Our extensive experiments across diverse transformer architectures on a variety of tasks demonstrate the superior performance and substantial computation savings of SMoE-Dropout, compared to dense training baselines with equivalent parameter counts. In particular, our trained BERT outperforms its densely trained counterpart with consistent improvements of {$1.03\%$, $0.78\%$, $1.09\%$} on challenging reasoning tasks {$\texttt{ASDiv-A}$, $\texttt{MAWPS}$, $\texttt{SVAMP}$}, respectively. Codes and models are available in https://github.com/VITA-Group/Random-MoE-as-Dropout.


In-Person Poster presentation / poster accept
#42
Scaling Forward Gradient With Local Losses

Mengye Ren · Simon Kornblith · Renjie Liao · Geoffrey E Hinton

Forward gradient learning computes a noisy directional gradient and is a biologically plausible alternative to backprop for learning deep neural networks. The standard forward gradient algorithm suffers from the curse of dimensionality in the number of parameters. In this paper, we propose to scale forward gradient by adding a large number of local greedy loss functions. We consider block-wise, patch-wise, and channel group-wise local losses, and show that activity perturbation reduces variance compared to weight perturbation. Inspired by MLPMixer, we also propose a new architecture, LocalMixer, that is more suitable for local learning. We find local learning can work well with both supervised classification and self-supervised contrastive learning. Empirically, it can match backprop on MNIST and CIFAR-10 and significantly outperform backprop-free algorithms on ImageNet.


In-Person Poster presentation / poster accept
#22
Self-Ensemble Protection: Training Checkpoints Are Good Data Protectors

Sizhe Chen · Geng Yuan · Xinwen Cheng · Yifan Gong · Minghai Qin · Yanzhi Wang · Xiaolin Huang

As data becomes increasingly vital, a company would be very cautious about releasing data, because the competitors could use it to train high-performance models, thereby posing a tremendous threat to the company's commercial competence. To prevent training good models on the data, we could add imperceptible perturbations to it. Since such perturbations aim at hurting the entire training process, they should reflect the vulnerability of DNN training, rather than that of a single model. Based on this new idea, we seek perturbed examples that are always unrecognized (never correctly classified) in training. In this paper, we uncover them by model checkpoints' gradients, forming the proposed self-ensemble protection (SEP), which is very effective because (1) learning on examples ignored during normal training tends to yield DNNs ignoring normal examples; (2) checkpoints' cross-model gradients are close to orthogonal, meaning that they are as diverse as DNNs with different architectures. That is, our amazing performance of ensemble only requires the computation of training one model. By extensive experiments with 9 baselines on 3 datasets and 5 architectures, SEP is verified to be a new state-of-the-art, e.g., our small $\ell_\infty=2/255$ perturbations reduce the accuracy of a CIFAR-10 ResNet18 from 94.56% to 14.68%, compared to 41.35% by the best-known method. Code is available at https://github.com/Sizhe-Chen/SEP.


In-Person Poster presentation / poster accept
#41
The Curious Case of Benign Memorization

Sotiris Anagnostidis · Gregor Bachmann · Lorenzo Noci · Thomas Hofmann

Despite the empirical advances of deep learning across a variety of learning tasks, our theoretical understanding of its success is still very restricted. One of the key challenges is the overparametrized nature of modern models, enabling complete overfitting of the data even if the labels are randomized, i.e. networks can completely \textit{memorize} all given patterns. While such a memorization capacity seems worrisome, in this work we show that under training protocols that include \textit{data augmentation}, neural networks learn to memorize entirely random labels in a benign way, i.e. they learn embeddings that lead to highly non-trivial performance under nearest neighbour probing. We demonstrate that deep models have the surprising ability to separate noise from signal by distributing the task of memorization and feature learning to different layers. As a result, only the very last layers are used for memorization, while preceding layers encode performant features which remain largely unaffected by the label noise. We explore the intricate role of the augmentations used for training and identify a memorization-generalization trade-off in terms of their diversity, marking a clear distinction to all previous works. Finally, we give a first explanation for the emergence of benign memorization by showing that \textit{malign} memorization under data augmentation is infeasible due to the insufficient capacity of the model for the increased sample size. As a consequence, the network is forced to leverage the correlated nature of the augmentations and as a result learns meaningful features. To complete the picture, a better theory of feature learning in deep neural networks is required to fully understand the origins of this phenomenon.


In-Person Poster presentation / poster accept
#21
Topology-aware Robust Optimization for Out-of-Distribution Generalization

Fengchun Qiao · Xi Peng

Out-of-distribution (OOD) generalization is a challenging machine learning problem yet highly desirable in many high-stake applications. Existing methods suffer from overly pessimistic modeling with low generalization confidence. As generalizing to arbitrary test distributions is impossible, we hypothesize that further structure on the topology of distributions is crucial in developing strong OOD resilience. To this end, we propose topology-aware robust optimization (TRO) that seamlessly integrates distributional topology in a principled optimization framework. More specifically, TRO solves two optimization objectives: (1) Topology Learning which explores data manifold to uncover the distributional topology; (2) Learning on Topology which exploits the topology to constrain robust optimization for tightly-bounded generalization risks. We theoretically demonstrate the effectiveness of our approach, and empirically show that it significantly outperforms the state of the arts in a wide range of tasks including classification, regression, and semantic segmentation. Moreover, we empirically find the data-driven distributional topology is consistent with domain knowledge, enhancing the explainability of our approach.


In-Person Poster presentation / top 5% paper
#40
Emergent World Representations: Exploring a Sequence Model Trained on a Synthetic Task

Kenneth Li · Aspen Hopkins · David Bau · Fernanda Viégas · Hanspeter Pfister · Martin Wattenberg

Language models show a surprising range of capabilities, but the source of their apparent competence is unclear. Do these networks just memorize a collection of surface statistics, or do they rely on internal representations of the process that generates the sequences they see? We investigate this question by applying a variant of the GPT model to the task of predicting legal moves in a simple board game, Othello. Although the network has no a priori knowledge of the game or its rules, we uncover evidence of an emergent nonlinear internal representation of the board state. Interventional experiments indicate this representation can be used to control the output of the network and create "latent saliency maps" that can help explain predictions in human terms.


In-Person Poster presentation / poster accept
#20
This Looks Like It Rather Than That: ProtoKNN For Similarity-Based Classifiers

Yuki Ukai · Tsubasa Hirakawa · Takayoshi Yamashita · Hironobu Fujiyoshi

Among research on the interpretability of deep learning models, the 'this looks like that' framework with ProtoPNet has attracted significant attention. By combining the strong power of deep learning models with the interpretability of case-based inference, ProtoPNet can achieve high accuracy while keeping its reasoning process interpretable. Many methods based on ProtoPNet have emerged to take advantage of this benefit, but despite their practical usefulness, they run into difficulty when utilizing similarity-based classifiers, e.g., in domains where unknown class samples exist. This is because ProtoPNet and its variants adopt the training process specific to linear classifiers, which allows the prototypes to represent useful image features for class recognition. Due to this difficulty, the effectiveness of similarity-based classifiers (e.g., k-nearest neighbor (KNN)) on the 'this looks like that' framework have not been sufficiently examined. To alleviate this problem, we propose ProtoKNN, an extension of ProtoPNet that adopts KNN classifiers. Extensive experiments on multiple open datasets demonstrate that the proposed method can achieve competitive results with a state-of-the-art method.


In-Person Poster presentation / poster accept
#39
ODAM: Gradient-based Instance-Specific Visual Explanations for Object Detection

Chenyang ZHAO · Antoni Chan

We propose the Gradient-weighted Object Detector Activation Mapping (Grad-ODAM), a visualized explanation technique for interpreting the predictions of object detectors. Utilizing the gradients of detector targets flowing into the intermediate feature maps, Grad-ODAM produces heat maps that show the influence of regions on the detector's decision. Compared to previous classification activation mapping works, Grad-ODAM generates instance-specific explanations rather than class-specific ones. We show that Grad-ODAM is applicable to both one-stage detectors such as FCOS and two-stage detectors such as Faster R-CNN, and produces higher-quality visual explanations than the state-of-the-art both effectively and efficiently. We next propose a training scheme, ODAM-Train, to improve the explanation ability on object discrimination of the detector through encouraging consistency between explanations for detections on the same object, and distinct explanations for detections on different objects. Based on the heat maps produced by Grad-ODAM with ODAM-Train, we propose ODAM-NMS, which considers the information of the model's explanation for each prediction to distinguish the duplicate detected objects. We present a detailed analysis of the visualized explanations of detectors and carry out extensive experiments to validate the effectiveness of the proposed ODAM.


In-Person Poster presentation / poster accept
#58
Cross-Level Distillation and Feature Denoising for Cross-Domain Few-Shot Classification

Hao ZHENG · Runqi Wang · Jianzhuang Liu · Asako Kanezaki

The conventional few-shot classification aims at learning a model on a large labeled base dataset and rapidly adapting to a target dataset that is from the same distribution as the base dataset. However, in practice, the base and the target datasets of few-shot classification are usually from different domains, which is the problem of cross-domain few-shot classification. We tackle this problem by making a small proportion of unlabeled images in the target domain accessible in the training stage. In this setup, even though the base data are sufficient and labeled, the large domain shift still makes transferring the knowledge from the base dataset difficult. We meticulously design a cross-level knowledge distillation method, which can strengthen the ability of the model to extract more discriminative features in the target dataset by guiding the network's shallow layers to learn higher-level information. Furthermore, in order to alleviate the overfitting in the evaluation stage, we propose a feature denoising operation which can reduce the feature redundancy and mitigate overfitting. Our approach can surpass the previous state-of-the-art method, Dynamic-Distillation, by 5.44% on 1-shot and 1.37% on 5-shot classification tasks on average in the BSCD-FSL benchmark. The implementation code will be available at https://gitee.com/mindspore/models/tree/master/research/cv/CLDFD.


In-Person Poster presentation / poster accept
#77
DBQ-SSD: Dynamic Ball Query for Efficient 3D Object Detection

Jinrong Yang · Lin Song · Songtao Liu · Weixin Mao · Zeming Li · Xiaoping Li · Hongbin Sun · Jian Sun · Nanning Zheng

Many point-based 3D detectors adopt point-feature sampling strategies to drop some points for efficient inference. These strategies are typically based on fixed and handcrafted rules, making it difficult to handle complicated scenes. Different from them, we propose a Dynamic Ball Query (DBQ) network to adaptively select a subset of input points according to the input features, and assign the feature transform with a suitable receptive field for each selected point. It can be embedded into some state-of-the-art 3D detectors and trained in an end-to-end manner, which significantly reduces the computational cost. Extensive experiments demonstrate that our method can reduce latency by 30%-100% on KITTI, Waymo, and ONCE datasets. Specifically, the inference speed of our detector can reach 162 FPS on KITTI scene, and 30 FPS on Waymo and ONCE scenes without performance degradation. Due to skipping the redundant points, some evaluation metrics show significant improvements.


In-Person Poster presentation / poster accept
#59
Leveraging Unlabeled Data to Track Memorization

Mahsa Forouzesh · Hanie Sedghi · Patrick Thiran

Deep neural networks may easily memorize noisy labels present in real-world data, which degrades their ability to generalize. It is therefore important to track and evaluate the robustness of models against noisy label memorization. We propose a metric, called $\textit{susceptibility}$, to gauge such memorization for neural networks. Susceptibility is simple and easy to compute during training. Moreover, it does not require access to ground-truth labels and it only uses unlabeled data. We empirically show the effectiveness of our metric in tracking memorization on various architectures and datasets and provide theoretical insights into the design of the susceptibility metric. Finally, we show through extensive experiments on datasets with synthetic and real-world label noise that one can utilize susceptibility and the overall training accuracy to distinguish models that maintain a low memorization on the training set and generalize well to unseen clean data.


In-Person Poster presentation / poster accept
#78
Data Valuation Without Training of a Model

Nohyun Ki · Hoyong Choi · Hye Won Chung

Many recent works on understanding deep learning try to quantify how much individual data instances influence the optimization and generalization of a model. Such attempts reveal characteristics and importance of individual instances, which may provide useful information in diagnosing and improving deep learning. However, most of the existing works on data valuation require actual training of a model, which often demands high-computational cost. In this paper, we provide a training-free data valuation score, called complexity-gap score, which is a data-centric score to quantify the influence of individual instances in generalization of two-layer overparameterized neural networks. The proposed score can quantify irregularity of the instances and measure how much each data instance contributes in the total movement of the network parameters during training. We theoretically analyze and empirically demonstrate the effectiveness of the complexity-gap score in finding `irregular or mislabeled' data instances, and also provide applications of the score in analyzing datasets and diagnosing training dynamics. Our code is publicly available at https://github.com/JJchy/CG_score.


In-Person Poster presentation / poster accept
#60
Multivariate Time-series Imputation with Disentangled Temporal Representations

SHUAI LIU · Xiucheng Li · Gao Cong · Yile Chen · YUE JIANG

Multivariate time series often faces the problem of missing value. Many time series imputation methods have been developed in the literature. However, these methods all rely on an entangled representation to model dynamics of time series, which may fail to fully exploit the multiple factors (e.g., periodic patterns) contained in the time series. Moreover, the entangled representation usually has no semantic meaning, and thus they often lack interpretability. In addition, many recent models are proposed to deal with the whole time series to capture cross-channel correlations and identify temporal dynamics, but they are not scalable to large-scale datasets. Different from existing approaches, we propose TIDER, a novel matrix factorization-based method with disentangled temporal representations that account for multiple factors, namely trend, seasonality, and local bias, to model complex dynamics. The learned disentanglement makes the imputation process more reliable and offers explainability for imputation results. Moreover, TIDER is scalable to large datasets. Empirical results show that our method not only outperforms existing approaches by notable margins on three real-world datasets, but also scales well to large datasets on which existing deep learning based methods struggle. Disentanglement validation experiments further demonstrate the robustness of our model in obtaining accurate and explainable disentangled components.


In-Person Poster presentation / poster accept
#79
Learning to Compose Soft Prompts for Compositional Zero-Shot Learning

Nihal Nayak · Peilin Yu · Stephen Bach

We introduce compositional soft prompting (CSP), a parameter-efficient learning technique to improve the zero-shot compositionality of large-scale pretrained vision-language models (VLMs) like CLIP. We develop CSP for compositional zero-shot learning, the task of predicting unseen attribute-object compositions (e.g., old cat and young tiger). VLMs have a flexible text encoder that can represent arbitrary classes as natural language prompts but they often underperform task-specific architectures on the compositional zero-shot benchmark datasets. CSP treats the attributes and objects that define classes as learnable tokens of vocabulary. During training, the vocabulary is tuned to recognize classes that compose tokens in multiple ways (e.g., old cat and white cat). At test time, we recompose the learned attribute-object vocabulary in new combinations to recognize novel classes. We show that CSP outperforms the CLIP on benchmark datasets by an average of 10.9 percentage points on AUC. CSP also outperforms CoOp, a soft prompting method that fine-tunes the prefix context tokens, by an average of 5.8 percentage points on AUC. We perform additional experiments to show that CSP improves generalization to higher-order attribute-attribute-object compositions (e.g., old white cat) and combinations of pretrained attributes and fine-tuned objects. The code is available at https://github.com/BatsResearch/csp.


In-Person Poster presentation / poster accept
#61
TimesNet: Temporal 2D-Variation Modeling for General Time Series Analysis

haixu wu · Tengge Hu · Yong Liu · Hang Zhou · Jianmin Wang · Mingsheng Long

Time series analysis is of immense importance in extensive applications, such as weather forecasting, anomaly detection, and action recognition. This paper focuses on temporal variation modeling, which is the common key problem of extensive analysis tasks. Previous methods attempt to accomplish this directly from the 1D time series, which is extremely challenging due to the intricate temporal patterns. Based on the observation of multi-periodicity in time series, we ravel out the complex temporal variations into the multiple intraperiod- and interperiod-variations. To tackle the limitations of 1D time series in representation capability, we extend the analysis of temporal variations into the 2D space by transforming the 1D time series into a set of 2D tensors based on multiple periods. This transformation can embed the intraperiod- and interperiod-variations into the columns and rows of the 2D tensors respectively, making the 2D-variations to be easily modeled by 2D kernels. Technically, we propose the TimesNet with TimesBlock as a task-general backbone for time series analysis. TimesBlock can discover the multi-periodicity adaptively and extract the complex temporal variations from transformed 2D tensors by a parameter-efficient inception block. Our proposed TimesNet achieves consistent state-of-the-art in five mainstream time series analysis tasks, including short- and long-term forecasting, imputation, classification, and anomaly detection. Code is available at this repository: https://github.com/thuml/TimesNet.


In-Person Poster presentation / top 5% paper
#62
Image to Sphere: Learning Equivariant Features for Efficient Pose Prediction

David Klee · Ondrej Biza · Robert Platt · Robin Walters

Predicting the pose of objects from a single image is an important but difficult computer vision problem. Methods that predict a single point estimate do not predict the pose of objects with symmetries well and cannot represent uncertainty. Alternatively, some works predict a distribution over orientations in $\mathrm{SO}(3)$. However, training such models can be computation- and sample-inefficient. Instead, we propose a novel mapping of features from the image domain to the 3D rotation manifold. Our method then leverages $\mathrm{SO}(3)$ equivariant layers, which are more sample efficient, and outputs a distribution over rotations that can be sampled at arbitrary resolution. We demonstrate the effectiveness of our method at object orientation prediction, and achieve state-of-the-art performance on the popular PASCAL3D+ dataset. Moreover, we show that our method can model complex object symmetries, without any modifications to the parameters or loss function. Code is available at \url{https://dmklee.github.io/image2sphere}.


In-Person Poster presentation / top 25% paper
#81
Sign and Basis Invariant Networks for Spectral Graph Representation Learning

Derek Lim · Joshua Robinson · Lingxiao Zhao · Tess Smidt · Suvrit Sra · Haggai Maron · Stefanie Jegelka

We introduce SignNet and BasisNet---new neural architectures that are invariant to two key symmetries displayed by eigenvectors: (i) sign flips, since if v is an eigenvector then so is -v; and (ii) more general basis symmetries, which occur in higher dimensional eigenspaces with infinitely many choices of basis eigenvectors. We prove that under certain conditions our networks are universal, i.e., they can approximate any continuous function of eigenvectors with the desired invariances. When used with Laplacian eigenvectors, our networks are provably more expressive than existing spectral methods on graphs; for instance, they subsume all spectral graph convolutions, certain spectral graph invariants, and previously proposed graph positional encodings as special cases. Experiments show that our networks significantly outperform existing baselines on molecular graph regression, learning expressive graph representations, and learning neural fields on triangle meshes. Our code is available at https://github.com/cptq/SignNet-BasisNet.


In-Person Poster presentation / poster accept
#63
SoftMatch: Addressing the Quantity-Quality Tradeoff in Semi-supervised Learning

Hao Chen · Ran Tao · Yue Fan · Yidong Wang · Jindong Wang · Bernt Schiele · Xing Xie · Bhiksha Raj · Marios Savvides

The critical challenge of Semi-Supervised Learning (SSL) is how to effectively leverage the limited labeled data and massive unlabeled data to improve the model's generalization performance. In this paper, we first revisit the popular pseudo-labeling methods via a unified sample weighting formulation and demonstrate the inherent quantity-quality trade-off problem of pseudo-labeling with thresholding, which may prohibit learning. To this end, we propose SoftMatch to overcome the trade-off by maintaining both high quantity and high quality of pseudo-labels during training, effectively exploiting the unlabeled data. We derive a truncated Gaussian function to weight samples based on their confidence, which can be viewed as a soft version of the confidence threshold. We further enhance the utilization of weakly-learned classes by proposing a uniform alignment approach. In experiments, SoftMatch shows substantial improvements across a wide variety of benchmarks, including image, text, and imbalanced classification.


In-Person Poster presentation / poster accept
#82
Unicom: Universal and Compact Representation Learning for Image Retrieval

xiang an · Jiankang Deng · Kaicheng Yang · Jaiwei Li · Ziyong Feng · Jia Guo · Jing Yang · Tongliang Liu

Modern image retrieval methods typically rely on fine-tuning pre-trained encoders to extract image-level descriptors.However, the most widely used models are pre-trained on ImageNet-1K with limited classes. The pre-trained feature representation is therefore not universal enough to generalize well to the diverse open-world classes. In this paper, we first cluster the large-scale \laion{} into one million pseudo classes based on the joint textual and visual features extracted by the CLIP model. Due to the confusion of label granularity, the automatically clustered dataset inevitably contains heavy inter-class conflict. To alleviate such conflict, we randomly select partial inter-class prototypes to construct the margin-based softmax loss. To further enhance the low-dimensional feature representation, we randomly select partial feature dimensions when calculating the similarities between embeddings and class-wise prototypes. The dual random partial selections are with respect to the class dimension and the feature dimension of the prototype matrix, making the classification conflict-robust and the feature embedding compact. Our method significantly outperforms state-of-the-art unsupervised and supervised image retrieval approaches on multiple benchmarks. The code and pre-trained models are released to facilitate future research \url{https://github.com/deepglint/unicom}.


In-Person Poster presentation / poster accept
#64
Online Boundary-Free Continual Learning by Scheduled Data Prior

Hyunseo Koh · Minhyuk Seo · Jihwan Bang · Hwanjun Song · Deokki Hong · Seulki Park · Jung-Woo Ha · Jonghyun Choi

Typical continual learning setup assumes that the dataset is split into multiple discrete tasks. We argue that it is less realistic as the streamed data would have no notion of task boundary in real-world data. Here, we take a step forward to investigate more realistic online continual learning – learning continuously changing data distribution without explicit task boundary, which we call boundary-free setup. As there is no clear boundary of tasks, it is not obvious when and what information in the past to be preserved as a better remedy for the stability-plasticity dilemma. To this end, we propose a scheduled transfer of previously learned knowledge. We further propose a data-driven balancing between the knowledge in the past and the present in learning objective. Moreover, since it is not straight-forward to use the previously proposed forgetting measure without task boundaries, we further propose a novel forgetting measure based on information theory that can capture forgetting. We empirically evaluate our method on a Gaussian data stream, its periodic extension, which assumes periodic data distribution frequently observed in real-life data, as well as the conventional disjoint task-split. Our method outperforms prior arts by large margins in various setups, using four popular benchmark datasets – CIFAR-10, CIFAR-100, TinyImageNet and ImageNet.


In-Person Poster presentation / top 5% paper
#83
Efficient Conditionally Invariant Representation Learning

Roman Pogodin · Namrata Deka · Yazhe Li · Danica Sutherland · Victor Veitch · Arthur Gretton

We introduce the Conditional Independence Regression CovariancE (CIRCE), a measure of conditional independence for multivariate continuous-valued variables. CIRCE applies as a regularizer in settings where we wish to learn neural features $\varphi(X)$ of data $X$ to estimate a target $Y$, while being conditionally independent of a distractor $Z$ given $Y$. Both $Z$ and $Y$ are assumed to be continuous-valued but relatively low dimensional, whereas $X$ and its features may be complex and high dimensional. Relevant settings include domain-invariant learning, fairness, and causal learning. The procedure requires just a single ridge regression from $Y$ to kernelized features of $Z$, which can be done in advance. It is then only necessary to enforce independence of $\varphi(X)$ from residuals of this regression, which is possible with attractive estimation properties and consistency guarantees. By contrast, earlier measures of conditional feature dependence require multiple regressions for each step of feature learning, resulting in more severe bias and variance, and greater computational cost. When sufficiently rich features are used, we establish that CIRCE is zero if and only if $\varphi(X) \perp \!\!\! \perp Z \mid Y$. In experiments, we show superior performance to previous methods on challenging benchmarks, including learning conditionally invariant image features. Code for image data experiments is available at github.com/namratadeka/circe.


In-Person Poster presentation / poster accept
#65
Learning to Extrapolate: A Transductive Approach

Aviv Netanyahu · Abhishek Gupta · Max Simchowitz · Kaiqing Zhang · Pulkit Agrawal

Machine learning systems, especially with overparameterized deep neural networks, can generalize to novel test instances drawn from the same distribution as the training data. However, they fare poorly when evaluated on out-of-support test points. In this work, we tackle the problem of developing machine learning systems that retain the power of overparameterized function approximators while enabling extrapolation to out-of-support test points when possible. This is accomplished by noting that under certain conditions, a "transductive" reparameterization can convert an out-of-support extrapolation problem into a problem of within-support combinatorial generalization. We propose a simple strategy based on bilinear embeddings to enable this type of combinatorial generalization, thereby addressing the out-of-support extrapolation problem under certain conditions. We instantiate a simple, practical algorithm applicable to various supervised learning and imitation learning tasks.


In-Person Poster presentation / poster accept
#84
FedFA: Federated Feature Augmentation

Tianfei Zhou · Ender Konukoglu

Federated learning is a distributed paradigm that allows multiple parties to collaboratively train deep models without exchanging the raw data. However, the data distribution among clients is naturally non-i.i.d., which leads to severe degradation of the learnt model. The primary goal of this paper is to develop a robust federated learning algorithm to address feature shift in clients’ samples, which can be caused by various factors, e.g., acquisition differences in medical imaging. To reach this goal, we propose FedFA to tackle federated learning from a dis- tinct perspective of federated feature augmentation. FedFA is based on a major insight that each client’s data distribution can be characterized by statistics (i.e., mean and standard deviation) of latent features; and it is likely to manipulate these local statistics globally, i.e., based on information in the entire federation, to let clients have a better sense of the underlying distribution and therefore alleviate local data bias. Based on this insight, we propose to augment each local feature statistic probabilistically based on a normal distribution, whose mean is the original statistic and variance quantifies the augmentation scope. Key to our approach is the determination of a meaningful Gaussian variance, which is accomplished by taking into account not only biased data of each individual client, but also underlying feature statistics characterized by all participating clients. We offer both theoretical and empirical justifications to verify the effectiveness of FedFA. Our code is available at https://github.com/tfzhou/FedFA.


In-Person Poster presentation / poster accept
#66
Decepticons: Corrupted Transformers Breach Privacy in Federated Learning for Language Models

Liam H Fowl · Jonas Geiping · Steven Reich · Yuxin Wen · Wojciech Czaja · Micah Goldblum · Tom Goldstein

Privacy is a central tenet of Federated learning (FL), in which a central server trains models without centralizing user data. However, gradient updates used in FL can leak user information. While the most industrial uses of FL are for text applications (e.g. keystroke prediction), the majority of attacks on user privacy in FL have focused on simple image classifiers and threat models that assume honest execution of the FL protocol from the server. We propose a novel attack that reveals private user text by deploying malicious parameter vectors, and which succeeds even with mini-batches, multiple users, and long sequences. Unlike previous attacks on FL, the attack exploits characteristics of both the Transformer architecture and the token embedding, separately extracting tokens and positional embeddings to retrieve high-fidelity text. We argue that the threat model of malicious server states is highly relevant from a user-centric perspective, and show that in this scenario, text applications using transformer models are much more vulnerable than previously thought.


In-Person Poster presentation / top 25% paper
#85
Omnigrok: Grokking Beyond Algorithmic Data

Ziming Liu · Eric Michaud · Max Tegmark

Grokking, the unusual phenomenon for algorithmic datasets where generalization happens long after overfitting the training data, has remained elusive. We aim to understand grokking by analyzing the loss landscapes of neural networks, identifying the mismatch between training and test losses as the cause for grokking. We refer to this as the "LU mechanism" because training and test losses (against model weight norm) typically resemble "L" and "U", respectively. This simple mechanism can nicely explain many aspects of grokking: data size dependence, weight decay dependence, the emergence of representations, etc. Guided by the intuitive picture, we are able to induce grokking on tasks involving images, language and molecules, although the grokking signals are sometimes less dramatic. We attribute the dramatic nature of grokking for algorithmic datasets to representation learning.


In-Person Poster presentation / poster accept
#67
Backpropagation through Combinatorial Algorithms: Identity with Projection Works

Subham Sahoo · Anselm Paulus · Marin Vlastelica Pogančić · Vít Musil · Volodymyr Kuleshov · Georg Martius

Embedding discrete solvers as differentiable layers has given modern deep learning architectures combinatorial expressivity and discrete reasoning capabilities. The derivative of these solvers is zero or undefined, therefore a meaningful replacement is crucial for effective gradient-based learning. Prior works rely on smoothing the solver with input perturbations, relaxing the solver to continuous problems, or interpolating the loss landscape with techniques that typically require additional solver calls, introduce extra hyper-parameters, or compromise performance. We propose a principled approach to exploit the geometry of the discrete solution space to treat the solver as a negative identity on the backward pass and further provide a theoretical justification. Our experiments demonstrate that such a straightforward hyper-parameter-free approach is able to compete with previous more complex methods on numerous experiments such as backpropagation through discrete samplers, deep graph matching, and image retrieval. Furthermore, we substitute the previously proposed problem-specific and label-dependent margin with a generic regularization procedure that prevents cost collapse and increases robustness.


In-Person Poster presentation / poster accept
#86
Neural Radiance Field Codebooks

Matthew Wallingford · Aditya Kusupati · Alex Fang · Vivek Ramanujan · Aniruddha Kembhavi · Roozbeh Mottaghi · Ali Farhadi

Compositional representations of the world are a promising step towards enabling high-level scene understanding and efficient transfer to downstream tasks. Learning such representations for complex scenes and tasks remains an open challenge. Towards this goal, we introduce Neural Radiance Field Codebooks (NRC), a scalable method for learning object-centric representations through novel view reconstruction. NRC learns to reconstruct scenes from novel views using a dictionary of object codes which are decoded through a volumetric renderer. This enables the discovery of reoccurring visual and geometric patterns across scenes which are transferable to downstream tasks. We show that NRC representations transfer well to object navigation in THOR, outperforming 2D and 3D representation learning methods by 3.1\% success rate. We demonstrate that our approach is able to perform unsupervised segmentation for more complex synthetic (THOR) and real scenes (NYU Depth) better than prior methods (.101 ARI). Finally, we show that NRC improves on the task of depth ordering by 5.5% accuracy in THOR.


In-Person Poster presentation / poster accept
#68
Autoregressive Conditional Neural Processes

Wessel Bruinsma · Stratis Markou · James Requeima · Andrew Y. K. Foong · Tom Andersson · Anna Vaughan · Anthony Buonomo · Scott Hosking · Richard E Turner

Conditional neural processes (CNPs; Garnelo et al., 2018a) are attractive meta-learning models which produce well-calibrated predictions and are trainable via a simple maximum likelihood procedure. Although CNPs have many advantages, they are unable to model dependencies in their predictions. Various works propose solutions to this, but these come at the cost of either requiring approximate inference or being limited to Gaussian predictions. In this work, we instead propose to change how CNPs are deployed at test time, without any modifications to the model or training procedure. Instead of making predictions independently for every target point, we autoregressively define a joint predictive distribution using the chain rule of probability, taking inspiration from the neural autoregressive density estimator (NADE) literature. We show that this simple procedure allows factorised Gaussian CNPs to model highly dependent, non-Gaussian predictive distributions. Perhaps surprisingly, in an extensive range of tasks with synthetic and real data, we show that CNPs in autoregressive (AR) mode not only significantly outperform non-AR CNPs, but are also competitive with more sophisticated models that are significantly more computationally expensive and challenging to train. This performance is remarkable given that AR CNPs are not trained to model joint dependencies. Our work provides an example of how ideas from neural distribution estimation can benefit neural processes, and motivates research into the AR deployment of other neural process models.


In-Person Poster presentation / top 25% paper
#87
Loss Landscapes are All You Need: Neural Network Generalization Can Be Explained Without the Implicit Bias of Gradient Descent

Ping-yeh Chiang · Renkun Ni · David Y. Miller · Arpit Bansal · Jonas Geiping · Micah Goldblum · Tom Goldstein

It is commonly believed that the implicit regularization of optimizers is needed for neural networks to generalize in the overparameterized regime. In this paper, we observe experimentally that this implicit regularization behavior is {\em generic}, i.e. it does not depend strongly on the choice of optimizer. We demonstrate this by training neural networks using several gradient-free optimizers, which do not benefit from properties that are often attributed to gradient-based optimizers. This includes a guess-and-check optimizer that generates uniformly random parameter vectors until finding one that happens to achieve perfect train accuracy, and a zeroth-order Pattern Search optimizer that uses no gradient computations. In the low sample and few-shot regimes, where zeroth order optimizers are most computationally tractable, we find that these non-gradient optimizers achieve test accuracy comparable to SGD. The code to reproduce results can be found at https://github.com/Ping-C/optimizer .


In-Person Poster presentation / poster accept
#69
FIT: A Metric for Model Sensitivity

Ben Zandonati · Adrian Pol · Maurizio Pierini · Olya Sirkin · Tal Kopetz

Model compression is vital to the deployment of deep learning on edge devices. Low precision representations, achieved via quantization of weights and activations, can reduce inference time and memory requirements. However, quantifying and predicting the response of a model to the changes associated with this procedure remains challenging. This response is non-linear and heterogeneous throughout the network. Understanding which groups of parameters and activations are more sensitive to quantization than others is a critical stage in maximizing efficiency. For this purpose, we propose FIT. Motivated by an information geometric perspective, FIT combines the Fisher information with a model of quantization. We find that FIT can estimate the final performance of a network without retraining. FIT effectively fuses contributions from both parameter and activation quantization into a single metric. Additionally, FIT is fast to compute when compared to existing methods, demonstrating favourable convergence properties. These properties are validated experimentally across hundreds of quantization configurations, with a focus on layer-wise mixed-precision quantization.


In-Person Poster presentation / poster accept
#70
Classically Approximating Variational Quantum Machine Learning with Random Fourier Features

Jonas Landman · Slimane Thabet · Constantin Dalyac · Hela Mhiri · Elham Kashefi

Many applications of quantum computing in the near term rely on variational quantum circuits (VQCs). They have been showcased as a promising model for reaching a quantum advantage in machine learning with current noisy intermediate scale quantum computers (NISQ). It is often believed that the power of VQCs relies on their exponentially large feature space, and extensive works have explored the expressiveness and trainability of VQCs in that regard. In our work, we propose a classical sampling method that can closely approximate most VQCs with Hamiltonian encoding, given only the description of their architecture. It uses the seminal proposal of Random Fourier Features (RFF) and the fact that VQCs can be seen as large Fourier series. We show theoretically and experimentally that models built from exponentially large quantum feature space can be classically reproduced by sampling a few frequencies to build an equivalent low dimensional kernel. Precisely, we show that the number of required samples grows favourably with the size of the quantum spectrum. This tool therefore questions the hope for quantum advantage from VQCs in many cases, but conversely helps to narrow the conditions for their potential success. We expect VQCs with various and complex encoding Hamiltonians, or with large input dimension, to become more robust to classical approximations.


In-Person Poster presentation / poster accept
#89
Label Propagation with Weak Supervision

Rattana Pukdee · Dylan Sam · Pradeep K Ravikumar · Nina Balcan

Semi-supervised learning and weakly supervised learning are important paradigms that aim to reduce the growing demand for labeled data in current machine learning applications. In this paper, we introduce a novel analysis of the classical label propagation algorithm (LPA) (Zhu & Ghahramani, 2002) that moreover takes advantage of useful prior information, specifically probabilistic hypothesized labels on the unlabeled data. We provide an error bound that exploits both the local geometric properties of the underlying graph and the quality of the prior information. We also propose a framework to incorporate multiple sources of noisy information. In particular, we consider the setting of weak supervision, where our sources of information are weak labelers. We demonstrate the ability of our approach on multiple benchmark weakly supervised classification tasks, showing improvements upon existing semi-supervised and weakly supervised methods.


In-Person Poster presentation / poster accept
#71
Learning to CROSS exchange to solve min-max vehicle routing problems

Minjun Kim · Junyoung Park · Jinkyoo Park

CROSS exchange (CE), a meta-heuristic that solves various vehicle routing problems (VRPs), improves the solutions of VRPs by swapping the sub-tours of the vehicles. Inspired by CE, we propose Neuro CE (NCE), a fundamental operator of \textit{learned} meta-heuristic, to solve various min-max VRPs while overcoming the limitations of CE, i.e., the expensive $\mathcal{O}(n^4)$ search cost. NCE employs graph neural network to predict the cost-decrements (i.e., results of CE searches) and utilizes the predicted cost-decrements to guide the selection of sub-tours for swapping, while reducing the search cost to $\mathcal{O}(n^2)$. As the learning objective of NCE is to predict the cost-decrement, the training can be simply done in a supervised fashion, whose training samples can be easily collected. Despite the simplicity of NCE, numerical results show that the NCE trained with min-max flexible multi-depot VRP (min-max FMDVRP) outperforms the meta-heuristic baselines. More importantly, it significantly outperforms the neural baselines when solving distinctive special cases of min-max FMDVRP (e.g., min-max MDVRP, min-max mTSP, min-max CVRP) without additional training.


In-Person Poster presentation / poster accept
#90
Continual Pre-training of Language Models

Zixuan Ke · Yijia Shao · Haowei Lin · Tatsuya Konishi · Gyuhak Kim · Bing Liu

Language models (LMs) have been instrumental for the rapid advance of natural language processing. This paper studies continual pre-training of LMs, in particular, continual domain-adaptive pre-training (or continual DAP-training). Existing research has shown that further pre-training an LM using a domain corpus to adapt the LM to the domain can improve the end-task performance in the domain. This paper proposes a novel method to continually DAP-train an LM with a sequence of unlabeled domain corpora to adapt the LM to these domains to improve their end-task performances. The key novelty of our method is a soft-masking mechanism that directly controls the update to the LM. A novel proxy is also proposed to preserve the general knowledge in the original LM. Additionally, it contrasts the representations of the previously learned domain knowledge (including the general knowledge in the pre-trained LM) and the knowledge from the current full network to achieve knowledge integration. The method not only overcomes catastrophic forgetting, but also achieves knowledge transfer to improve end-task performances. Empirical evaluation demonstrates the effectiveness of the proposed method.


In-Person Poster presentation / poster accept
#72
Diffusion Probabilistic Fields

Peiye Zhuang · Samira Abnar · Jiatao Gu · Alex Schwing · Joshua Susskind · MIGUEL ANGEL BAUTISTA MARTIN

Diffusion probabilistic models have quickly become a major approach for generative modeling of images, 3D geometry, video and other domains. However, to adapt diffusion generative modeling to these domains the denoising network needs to be carefully designed for each domain independently, oftentimes under the assumption that data lives in a Euclidean grid. In this paper we introduce Diffusion Probabilistic Fields (DPF), a diffusion model that can learn distributions over continuous functions defined over metric spaces, commonly known as fields. We extend the formulation of diffusion probabilistic models to deal with this field parametrization in an explicit way, enabling us to define an end-to-end learning algorithm that side-steps the requirement of representing fields with latent vectors as in previous approaches (Dupont et al., 2022a; Du et al., 2021). We empirically show that, while using the same denoising network, DPF effectively deals with different modalities like 2D images and 3D geometry, in addition to modeling distributions over fields defined on non-Euclidean metric spaces.


In-Person Poster presentation / poster accept
#91
FunkNN: Neural Interpolation for Functional Generation

AmirEhsan Khorashadizadeh · Anadi Chaman · Valentin Debarnot · Ivan Dokmanic

Can we build continuous generative models which generalize across scales, can be evaluated at any coordinate, admit calculation of exact derivatives, and are conceptually simple? Existing MLP-based architectures generate worse samples than the grid-based generators with favorable convolutional inductive biases. Models that focus on generating images at different scales do better, but employ complex architectures not designed for continuous evaluation of images and derivatives.We take a signal-processing perspective and treat continuous signal generation as interpolation from samples. Indeed, correctly sampled discrete images contain all information about the low spatial frequencies. The question is then how to extrapolate the spectrum in a data-driven way while meeting the above design criteria. Our answer is FunkNN---a novel convolutional network which learns how to reconstruct continuous images at arbitrary coordinates and can be applied to any image dataset. Combined with a discrete generative model it becomes a functional generator which can act as a prior in continuous ill-posed inverse problems. We show that FunkNN generates high-quality continuous images and exhibits strong out-of-distribution performance thanks to its patch-based design. We further showcase its performance in several stylized inverse problems with exact spatial derivatives.


In-Person Poster presentation / top 25% paper
#92
Rarity Score : A New Metric to Evaluate the Uncommonness of Synthesized Images

Jiyeon Han · Hwanil Choi · Yunjey Choi · Junho Kim · Jung-Woo Ha · Jaesik Choi

Evaluation metrics in image synthesis play a key role to measure performances of generative models. However, most metrics mainly focus on image fidelity. Existing diversity metrics are derived by comparing distributions, and thus they cannot quantify the diversity or rarity degree of each generated image. In this work, we propose a new evaluation metric, called `rarity score', to measure both image-wise uncommonness and model-wise diversified generation performance. We first show empirical observation that typical samples are close to each other and distinctive samples are far from each other in nearest-neighbor distances on latent spaces represented by feature extractor networks such as VGG16. We then show that one can effectively filter typical or distinctive samples with the proposed metric. We also use our metric to demonstrate that the extent to which different generative models produce rare images can be effectively compared. Further, our metric can be used to compare rarities between datasets that share the same concept such as CelebA-HQ and FFHQ. Finally, we analyze the use of metrics in different designs of feature extractors to better understand the relationship between feature spaces and resulting high-rarity images. Code will be publicly available for the research community.


In-Person Poster presentation / top 25% paper
#93
An Image is Worth One Word: Personalizing Text-to-Image Generation using Textual Inversion

Rinon Gal · Yuval Alaluf · Yuval Atzmon · Or Patashnik · Amit Bermano · Gal Chechik · Daniel Cohen-Or

Text-to-image models offer unprecedented freedom to guide creation through natural language. Yet, it is unclear how such freedom can be exercised to generate images of specific unique concepts, modify their appearance, or compose them in new roles and novel scenes.In other words, we ask: how can we use language-guided models to turn *our* cat into a painting, or imagine a new product based on *our* favorite toy? Here we present a simple approach that allows such creative freedom. Using only $3$-$5$ images of a user-provided concept, like an object or a style, we learn to represent it through new ``words" in the embedding space of a frozen text-to-image model.These ``words" can be composed into natural language sentences, guiding *personalized* creation in an intuitive way.Notably, we find evidence that a *single* word embedding is sufficient for capturing unique and varied concepts. We compare our approach to a wide range of baselines, and demonstrate that it can more faithfully portray the concepts across a range of applications and tasks. Our code, data and new words will be available.


In-Person Poster presentation / top 25% paper
#75
The Role of ImageNet Classes in Fréchet Inception Distance

Tuomas Kynkäänniemi · Tero Karras · Miika Aittala · Timo Aila · Jaakko Lehtinen

Fréchet Inception Distance (FID) is the primary metric for ranking models in data-driven generative modeling. While remarkably successful, the metric is known to sometimes disagree with human judgement. We investigate a root cause of these discrepancies, and visualize what FID "looks at" in generated images. We show that the feature space that FID is (typically) computed in is so close to the ImageNet classifications that aligning the histograms of Top-$N$ classifications between sets of generated and real images can reduce FID substantially — without actually improving the quality of results. Thus, we conclude that FID is prone to intentional or accidental distortions. As a practical example of an accidental distortion, we discuss a case where an ImageNet pre-trained FastGAN achieves a FID comparable to StyleGAN2, while being worse in terms of human evaluation.


In-Person Poster presentation / top 5% paper
#94
3D generation on ImageNet

Ivan Skorokhodov · Aliaksandr Siarohin · Yinghao Xu · Jian Ren · Hsin-Ying Lee · Peter Wonka · Sergey Tulyakov

All existing 3D-from-2D generators are designed for well-curated single-category datasets, where all the objects have (approximately) the same scale, 3D location, and orientation, and the camera always points to the center of the scene. This makes them inapplicable to diverse, in-the-wild datasets of non-alignable scenes rendered from arbitrary camera poses. In this work, we develop a 3D generator with Generic Priors (3DGP): a 3D synthesis framework with more general assumptions about the training data, and show that it scales to very challenging datasets, like ImageNet. Our model is based on three new ideas. First, we incorporate an inaccurate off-the-shelf depth estimator into 3D GAN training via a special depth adaptation module to handle the imprecision. Then, we create a flexible camera model and a regularization strategy for it to learn its distribution parameters during training. Finally, we extend the recent ideas of transferring knowledge from pretrained classifiers into GANs for patch-wise trained models by employing a simple distillation-based technique on top of the discriminator. It achieves more stable training than the existing methods and speeds up the convergence by at least 40%. We explore our model on four datasets: SDIP Dogs $256^2$, SDIP Elephants $256^2$, LSUN Horses $256^2$, and ImageNet $256^2$ and demonstrate that 3DGP outperforms the recent state-of-the-art in terms of both texture and geometry quality. Code and visualizations: https://snap-research.github.io/3dgp.


In-Person Poster presentation / poster accept
#95
LDMIC: Learning-based Distributed Multi-view Image Coding

Xinjie Zhang · Jiawei Shao · Jun Zhang

Multi-view image compression plays a critical role in 3D-related applications. Existing methods adopt a predictive coding architecture, which requires joint encoding to compress the corresponding disparity as well as residual information. This demands collaboration among cameras and enforces the epipolar geometric constraint between different views, which makes it challenging to deploy these methods in distributed camera systems with randomly overlapping fields of view. Meanwhile, distributed source coding theory indicates that efficient data compression of correlated sources can be achieved by independent encoding and joint decoding, which motivates us to design a learning-based distributed multi-view image coding (LDMIC) framework. With independent encoders, LDMIC introduces a simple yet effective joint context transfer module based on the cross-attention mechanism at the decoder to effectively capture the global inter-view correlations, which is insensitive to the geometric relationships between images. Experimental results show that LDMIC significantly outperforms both traditional and learning-based MIC methods while enjoying fast encoding speed. Code is released at https://github.com/Xinjie-Q/LDMIC.


In-Person Poster presentation / top 25% paper
#114
Learning multi-scale local conditional probability models of images

Zahra Kadkhodaie · Florentin Guth · Stéphane Mallat · Eero Simoncelli

Deep neural networks can learn powerful prior probability models for images, as evidenced by the high-quality generations obtained with recent score-based diffusion methods. But the means by which these networks capture complex global statistical structure, apparently without suffering from the curse of dimensionality, remain a mystery. To study this, we incorporate diffusion methods into a multi-scale decomposition, reducing dimensionality by assuming a stationary local Markov model for wavelet coefficients conditioned on coarser-scale coefficients. We instantiate this model using convolutional neural networks (CNNs) with local receptive fields, which enforce both the stationarity and Markov properties. Global structures are captured using a CNN with receptive fields covering the entire (but small) low-pass image. We test this model on a dataset of face images, which are highly non-stationary and contain large-scale geometric structures.Remarkably, denoising, super-resolution, and image synthesis results all demonstrate that these structures can be captured with significantly smaller conditioning neighborhoods than required by a Markov model implemented in the pixel domain. Our results show that score estimation for large complex images can be reduced to low-dimensional Markov conditional models across scales, alleviating the curse of dimensionality.


In-Person Poster presentation / top 25% paper
#133
Learning Diffusion Bridges on Constrained Domains

Xingchao Liu · Lemeng Wu · Mao Ye · Qiang Liu

Diffusion models have achieved promising results on generative learning recently. However, because diffusion processes are most naturally applied on the unconstrained Euclidean space $\mathrm{R}^d$, key challenges arise for developing diffusion based models for learning data on constrained and structured domains. We present a simple and unified framework to achieve this that can be easily adopted to various types of domains, including product spaces of any type (be it bounded/unbounded, continuous/discrete, categorical/ordinal, or their mix). In our model, the diffusion process is driven by a drift force that is a sum of two terms: one singular force designed by $Doob's~ h$-$transform$ that ensures all outcomes of the process to belong to the desirable domain, and one non-singular neural force field that is trained to make sure the outcome follows the data distribution statistically. Experiments show that our methods perform superbly on generating tabular data, images, semantic segments and 3D point clouds.


In-Person Poster presentation / poster accept
#113
StyleMorph: Disentangled 3D-Aware Image Synthesis with a 3D Morphable StyleGAN

Eric-Tuan Le · Edward Bartrum · Iasonas Kokkinos

We introduce StyleMorph, a 3D-aware generative model that disentangles 3D shape, camera pose, object appearance, and background appearance for high quality image synthesis. We account for shape variability by morphing a canonical 3D object template, effectively learning a 3D morphable model in an entirely unsupervised manner through backprop. We chain 3D morphable modelling with deferred neural rendering by performing an implicit surface rendering of “Template Object Coordinates” (TOCS), which can be understood as an unsupervised counterpart to UV maps. This provides a detailed 2D TOCS map signal that reflects the compounded geometric effects of non-rigid shape variation, camera pose, and perspective projection. We combine 2D TOCS maps with an independent appearance code to condition a StyleGAN-based deferred neural rendering (DNR) network for foreground image (object) synthesis; we use a separate code for background synthesis and do late fusion to deliver the final result. We show competitive synthesis results on 4 datasets (FFHQ faces, AFHQ Cats, Dogs, Wild), while achieving the joint disentanglement of shape, pose, object and background texture.


In-Person Poster presentation / top 25% paper
#132
Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow

Xingchao Liu · Chengyue Gong · Qiang Liu

We present rectified flow, a simple approach to learning (neural) ordinary differential equation (ODE) models to transport between two empirically observed distributions $\pi_0$ and $\pi_1$, hence providing a unified solution to generative modeling and domain transfer, among various other tasks involving distribution transport. The idea of rectified flow is to learn the ODE to follow the straight paths connecting the points drawn from $\pi_0$ and $\pi_1$ as much as possible. This is achieved by solving a straightforward nonlinear least squares optimization problem, which can be easily scaled to large models without introducing extra parameters beyond standard supervised learning. The straight paths are the shortest paths between two points, and can be simulated exactly without time discretization and hence yield computationally efficient models. We show that, by learning a rectified flow from data, we effectively turn an arbitrary coupling of $\pi_0$ and $\pi_1$ to a new deterministic coupling with provably non-increasing convex transport costs. In addition, with a ``reflow" procedure that iteratively learns a new rectified flow from the data bootstrapped from the previous one, we obtain a sequence of flows with increasingly straight paths, which can be simulated accurately with coarse time discretization in the inference phase. In empirical studies, we show that rectified flow performs superbly on image generation, image-to-image translation, and domain adaptation. In particular, on image generation and translation, our method yields nearly straight flows that give high quality results even with \emph{a single Euler discretization step}. Code is available at \url{https://github.com/gnobitab/RectifiedFlow}.


In-Person Poster presentation / poster accept
#112
A critical look at the evaluation of GNNs under heterophily: Are we really making progress?

Oleg Platonov · Denis Kuznedelev · Michael Diskin · Artem Babenko · Liudmila Prokhorenkova

Node classification is a classical graph representation learning task on which Graph Neural Networks (GNNs) have recently achieved strong results. However, it is often believed that standard GNNs only work well for homophilous graphs, i.e., graphs where edges tend to connect nodes of the same class. Graphs without this property are called heterophilous, and it is typically assumed that specialized methods are required to achieve strong performance on such graphs. In this work, we challenge this assumption. First, we show that the standard datasets used for evaluating heterophily-specific models have serious drawbacks, making results obtained by using them unreliable. The most significant of these drawbacks is the presence of a large number of duplicate nodes in the datasets Squirrel and Chameleon, which leads to train-test data leakage. We show that removing duplicate nodes strongly affects GNN performance on these datasets. Then, we propose a set of heterophilous graphs of varying properties that we believe can serve as a better benchmark for evaluating the performance of GNNs under heterophily. We show that standard GNNs achieve strong results on these heterophilous graphs, almost always outperforming specialized models. Our datasets and the code for reproducing our experiments are available at https://github.com/yandex-research/heterophilous-graphs


In-Person Poster presentation / poster accept
#131
E3Bind: An End-to-End Equivariant Network for Protein-Ligand Docking

Yangtian Zhang · Huiyu Cai · Chence Shi · Jian Tang

In silico prediction of the ligand binding pose to a given protein target is a crucial but challenging task in drug discovery.This work focuses on blind flexible self-docking, where we aim to predict the positions, orientations and conformations of docked molecules. Traditional physics-based methods usually suffer from inaccurate scoring functions and high inference cost. Recently, data-driven methods based on deep learning techniques are attracting growing interest thanks to their efficiency during inference and promising performance. These methods usually either adopt a two-stage approach by first predicting the distances between proteins and ligands and then generating the final coordinates based on the predicted distances, or directly predicting the global roto-translation of ligands. In this paper, we take a different route. Inspired by the resounding success of AlphaFold2 for protein structure prediction, we propose E3Bind, an end-to-end equivariant network that iteratively updates the ligand pose. E3Bind models the protein-ligand interaction through careful consideration of the geometric constraints in docking and the local context of the binding site. Experiments on standard benchmark datasets demonstrate the superior performance of our end-to-end trainable model compared to traditional and recently-proposed deep learning methods.


In-Person Poster presentation / poster accept
#111
Sampling-free Inference for Ab-Initio Potential Energy Surface Networks

Nicholas Gao · Stephan Günnemann

Recently, it has been shown that neural networks not only approximate the ground-state wave functions of a single molecular system well but can also generalize to multiple geometries. While such generalization significantly speeds up training, each energy evaluation still requires Monte Carlo integration which limits the evaluation to a few geometries. In this work, we address the inference shortcomings by proposing the Potential learning from ab-initio Networks (PlaNet) framework, in which we simultaneously train a surrogate model in addition to the neural wave function. At inference time, the surrogate avoids expensive Monte-Carlo integration by directly estimating the energy, accelerating the process from hours to milliseconds. In this way, we can accurately model high-resolution multi-dimensional energy surfaces for larger systems that previously were unobtainable via neural wave functions. Finally, we explore an additional inductive bias by introducing physically-motivated restricted neural wave function models. We implement such a function with several additional improvements in the new PESNet++ model. In our experimental evaluation, PlaNet accelerates inference by 7 orders of magnitude for larger molecules like ethanol while preserving accuracy. Compared to previous energy surface networks, PESNet++ reduces energy errors by up to 74%.


In-Person Poster presentation / poster accept
#130
Actionable Neural Representations: Grid Cells from Minimal Constraints

Will Dorrell · Peter Latham · Timothy Behrens · James Whittington

To afford flexible behaviour, the brain must build internal representations that mirror the structure of variables in the external world. For example, 2D space obeys rules: the same set of actions combine in the same way everywhere (step north, then south, and you won't have moved, wherever you start). We suggest the brain must represent this consistent meaning of actions across space, as it allows you to find new short-cuts and navigate in unfamiliar settings. We term this representation an `actionable representation'. We formulate actionable representations using group and representation theory, and show that, when combined with biological and functional constraints - non-negative firing, bounded neural activity, and precise coding - multiple modules of hexagonal grid cells are the optimal representation of 2D space. We support this claim with intuition, analytic justification, and simulations. Our analytic results normatively explain a set of surprising grid cell phenomena, and make testable predictions for future experiments. Lastly, we highlight the generality of our approach beyond just understanding 2D space. Our work characterises a new principle for understanding and designing flexible internal representations: they should be actionable, allowing animals and machines to predict the consequences of their actions, rather than just encode.


In-Person Poster presentation / top 25% paper
#110
Training language models to summarize narratives improves brain alignment

Khai Loong Aw · Mariya Toneva

Building systems that achieve a deeper understanding of language is one of the central goals of natural language processing (NLP). Towards this goal, recent works have begun to train language models on narrative datasets which require extracting the most critical information by integrating across long contexts. However, it is still an open question whether these models are learning a deeper understanding of the text, or if the models are simply learning a heuristic to complete the task. This work investigates this further by turning to the one language processing system that truly understands complex language: the human brain. We show that training language models for deeper narrative understanding results in richer representations that have improved alignment to human brain activity. We further find that the improvements in brain alignment are larger for character names than for other discourse features, which indicates that these models are learning important narrative elements. Taken together, these results suggest that this type of training can indeed lead to deeper language understanding. These findings have consequences both for cognitive neuroscience by revealing some of the significant factors behind brain-NLP alignment, and for NLP by highlighting that understanding of long-range context can be improved beyond language modeling.


In-Person Poster presentation / top 25% paper
#109
Sparsity-Constrained Optimal Transport

Tianlin Liu · Joan Puigcerver · Mathieu Blondel

Regularized optimal transport (OT) is now increasingly used as a loss or as a matching layer in neural networks. Entropy-regularized OT can be computed using the Sinkhorn algorithm but it leads to fully-dense transportation plans, meaning that all sources are (fractionally) matched with all targets. To address this issue, several works have investigated quadratic regularization instead. This regularization preserves sparsity and leads to unconstrained and smooth (semi) dual objectives, that can be solved with off-the-shelf gradient methods. Unfortunately, quadratic regularization does not give direct control over the cardinality (number of nonzeros) of the transportation plan. We propose in this paper a new approach for OT with explicit cardinality constraints on the transportation plan. Our work is motivated by an application to sparse mixture of experts, where OT can be used to match input tokens such as image patches with expert models such as neural networks. Cardinality constraints ensure that at most $k$ tokens are matched with an expert, which is crucial for computational performance reasons. Despite the nonconvexity of cardinality constraints, we show that the corresponding (semi) dual problems are tractable and can be solved with first-order gradient methods. Our method can be thought as a middle ground between unregularized OT (recovered in the limit case $k=1$) and quadratically-regularized OT (recovered when $k$ is large enough). The smoothness of the objectives increases as $k$ increases, giving rise to a trade-off between convergence speed and sparsity of the optimal plan.


In-Person Poster presentation / poster accept
#128
Noise Is Not the Main Factor Behind the Gap Between Sgd and Adam on Transformers, But Sign Descent Might Be

Frederik Kunstner · Jacques Chen · Jonathan Lavington · Mark Schmidt

The success of the Adam optimizer on a wide array of architectures has made it the default in settings where stochastic gradient descent (SGD) performs poorly. However, our theoretical understanding of this discrepancy is lagging, preventing the development of significant improvements on either algorithm. Recent work advances the hypothesis that Adam and other heuristics like gradient clipping outperform SGD on language tasks because the distribution of the error induced by sampling has heavy tails. This suggests that Adam outperform SGD because it uses a more robust gradient estimate. We evaluate this hypothesis by varying the batch size, up to the entire dataset, to control for stochasticity. We present evidence that stochasticity and heavy-tailed noise are not major factors in the performance gap between SGD and Adam. Rather, Adam performs better as the batch size increases, while SGD is less effective at taking advantage of the reduction in noise. This raises the question as to why Adam outperforms SGD in the full-batch setting. Through further investigation of simpler variants of SGD, we find that the behavior of Adam with large batches is similar to sign descent with momentum.


In-Person Poster presentation / poster accept
#108
Variance Reduction is an Antidote to Byzantines: Better Rates, Weaker Assumptions and Communication Compression as a Cherry on the Top

Eduard Gorbunov · Samuel Horváth · Peter Richtarik · Gauthier Gidel

Byzantine-robustness has been gaining a lot of attention due to the growth of the interest in collaborative and federated learning. However, many fruitful directions, such as the usage of variance reduction for achieving robustness and communication compression for reducing communication costs, remain weakly explored in the field. This work addresses this gap and proposes Byz-VR-MARINA -- a new Byzantine-tolerant method with variance reduction and compression. A key message of our paper is that variance reduction is key to fighting Byzantine workers more effectively. At the same time, communication compression is a bonus that makes the process more communication efficient. We derive theoretical convergence guarantees for Byz-VR-MARINA outperforming previous state-of-the-art for general non-convex and Polyak-Lojasiewicz loss functions. Unlike the concurrent Byzantine-robust methods with variance reduction and/or compression, our complexity results are tight and do not rely on restrictive assumptions such as boundedness of the gradients or limited compression. Moreover, we provide the first analysis of a Byzantine-tolerant method supporting non-uniform sampling of stochastic gradients. Numerical experiments corroborate our theoretical findings.


In-Person Poster presentation / top 25% paper
#127
Efficient Discrete Multi Marginal Optimal Transport Regularization

Ronak Mehta · Jeffery Kline · Vishnu Lokhande · Glenn Fung · Vikas Singh

Optimal transport has emerged as a powerful tool for a variety of problems in machine learning, and it is frequently used to enforce distributional constraints. In this context, existing methods often use either a Wasserstein metric, or else they apply concurrent barycenter approaches when more than two distributions are considered. In this paper, we leverage multi-marginal optimal transport (MMOT), where we take advantage of a procedure that computes a generalized earth mover's distance as a sub-routine. We show that not only is our algorithm computationally more efficient compared to other barycentric-based distance methods, but it has the additional advantage that gradients used for backpropagation can be efficiently computed during the forward pass computation itself, which leads to substantially faster model training. We provide technical details about this new regularization term and its properties, and we present experimental demonstrations of faster runtimes when compared to standard Wasserstein-style methods. Finally, on a range of experiments designed to assess effectiveness at enforcing fairness, we demonstrate our method compares well with alternatives.


In-Person Poster presentation / poster accept
#107
ROCO: A General Framework for Evaluating Robustness of Combinatorial Optimization Solvers on Graphs

Han Lu · Zenan Li · Runzhong Wang · Qibing Ren · Xijun Li · Mingxuan Yuan · Jia Zeng · Xiaokang Yang · Junchi Yan

Solving combinatorial optimization (CO) on graphs has been attracting increasing interests from the machine learning community whereby data-driven approaches were recently devised to go beyond traditional manually-designated algorithms. In this paper, we study the robustness of a combinatorial solver as a blackbox regardless it is classic or learning-based though the latter can often be more interesting to the ML community. Specifically, we develop a practically feasible robustness metric for general CO solvers. A no-worse optimal cost guarantee is developed as such the optimal solutions are not required to achieve for solvers, and we tackle the non-differentiable challenge in input instance disturbance by resorting to black-box adversarial attack methods. Extensive experiments are conducted on 14 unique combinations of solvers and CO problems, and we demonstrate that the performance of state-of-the-art solvers like Gurobi can degenerate by over 20% under the given time limit bound on the hard instances discovered by our robustness metric, raising concerns about the robustness of combinatorial optimization solvers.


In-Person Poster presentation / poster accept
#126
Sampling-based inference for large linear models, with application to linearised Laplace

Javier Antorán · Shreyas Padhy · Riccardo Barbano · Eric Nalisnick · David Janz · José Miguel Hernández Lobato

Large-scale linear models are ubiquitous throughout machine learning, with contemporary application as surrogate models for neural network uncertainty quantification; that is, the linearised Laplace method. Alas, the computational cost associated with Bayesian linear models constrains this method's application to small networks, small output spaces and small datasets. We address this limitation by introducing a scalable sample-based Bayesian inference method for conjugate Gaussian multi-output linear models, together with a matching method for hyperparameter (regularisation) selection. Furthermore, we use a classic feature normalisation method (the g-prior) to resolve a previously highlighted pathology of the linearised Laplace method. Together, these contributions allow us to perform linearised neural network inference with ResNet-18 on CIFAR100 (11M parameters, 100 output dimensions × 50k datapoints) and with a U-Net on a high-resolution tomographic reconstruction task (2M parameters, 251k output dimensions).


In-Person Poster presentation / poster accept
#106
Bridge the Inference Gaps of Neural Processes via Expectation Maximization

Qi Wang · Marco Federici · Herke van Hoof

The neural process (NP) is a family of computationally efficient models for learning distributions over functions. However, it suffers from under-fitting and shows suboptimal performance in practice. Researchers have primarily focused on incorporating diverse structural inductive biases, e.g. attention or convolution, in modeling. The topic of inference suboptimality and an analysis of the NP from the optimization objective perspective has hardly been studied in earlier work. To fix this issue, we propose a surrogate objective of the target log-likelihood of the meta dataset within the expectation maximization framework. The resulting model, referred to as the Self-normalized Importance weighted Neural Process (SI-NP), can learn a more accurate functional prior and has an improvement guarantee concerning the target log-likelihood. Experimental results show the competitive performance of SI-NP over other NPs objectives and illustrate that structural inductive biases, such as attention modules, can also augment our method to achieve SOTA performance.


In-Person Poster presentation / poster accept
#125
Estimating individual treatment effects under unobserved confounding using binary instruments

Dennis Frauen · Stefan Feuerriegel

Estimating conditional average treatment effects (CATEs) from observational data is relevant in many fields such as personalized medicine. However, in practice, the treatment assignment is usually confounded by unobserved variables and thus introduces bias. A remedy to remove the bias is the use of instrumental variables (IVs). Such settings are widespread in medicine (e.g., trials where the treatment assignment is used as binary IV). In this paper, we propose a novel, multiply robust machine learning framework, called MRIV, for estimating CATEs using binary IVs and thus yield an unbiased CATE estimator. Different from previous work for binary IVs, our framework estimates the CATE directly via a pseudo-outcome regression. (1)~We provide a theoretical analysis where we show that our framework yields multiple robust convergence rates: our CATE estimator achieves fast convergence even if several nuisance estimators converge slowly. (2)~We further show that our framework asymptotically outperforms state-of-the-art plug-in IV methods for CATE estimation, in the sense that it achieves a faster rate of convergence if the CATE is smoother than the individual outcome surfaces. (3)~We build upon our theoretical results and propose a tailored deep neural network architecture called MRIV-Net for CATE estimation using binary IVs. Across various computational experiments, we demonstrate empirically that our MRIV-Net achieves state-of-the-art performance. To the best of our knowledge, our MRIV is the first multiply robust machine learning framework tailored to estimating CATEs in the binary IV setting.


In-Person Poster presentation / poster accept
#105
Imitating Human Behaviour with Diffusion Models

Tim Pearce · Tabish Rashid · Anssi Kanervisto · David Bignell · Mingfei Sun · Raluca Georgescu · Sergio Valcarcel Macua · Shan Zheng Tan · Ida Momennejad · Katja Hofmann · Sam Devlin

Diffusion models have emerged as powerful generative models in the text-to-image domain. This paper studies their application as observation-to-action models for imitating human behaviour in sequential environments. Human behaviour is stochastic and multimodal, with structured correlations between action dimensions. Meanwhile, standard modelling choices in behaviour cloning are limited in their expressiveness and may introduce bias into the cloned policy. We begin by pointing out the limitations of these choices. We then propose that diffusion models are an excellent fit for imitating human behaviour, since they learn an expressive distribution over the joint action space. We introduce several innovations to make diffusion models suitable for sequential environments; designing suitable architectures, investigating the role of guidance, and developing reliable sampling strategies. Experimentally, diffusion models closely match human demonstrations in a simulated robotic control task and a modern 3D gaming environment.


In-Person Poster presentation / top 25% paper
#124
Programmatically Grounded, Compositionally Generalizable Robotic Manipulation

Renhao Wang · Jiayuan Mao · Joy Hsu · Hang Zhao · Jiajun Wu · Yang Gao

Robots operating in the real world require both rich manipulation skills as well as the ability to semantically reason about when to apply those skills. Towards this goal, recent works have integrated semantic representations from large-scale pretrained vision-language (VL) models into manipulation models, imparting them with more general reasoning capabilities. However, we show that the conventional {\it pretraining-finetuning} pipeline for integrating such representations entangles the learning of domain-specific action information and domain-general visual information, leading to less data-efficient training and poor generalization to unseen objects and tasks. To this end, we propose \ours, a {\it modular} approach to better leverage pretrained VL models by exploiting the syntactic and semantic structures of language instructions. Our framework uses a semantic parser to recover an executable program, composed of functional modules grounded on vision and action across different modalities. Each functional module is realized as a combination of deterministic computation and learnable neural networks. Program execution produces parameters to general manipulation primitives for a robotic end-effector. The entire modular network can be trained with end-to-end imitation learning objectives. Experiments show that our model successfully disentangles action and perception, translating to improved zero-shot and compositional generalization in a variety of manipulation behaviors. Project webpage at: \url{https://progport.github.io}.


In-Person Poster presentation / poster accept
#104
Integrating Symmetry into Differentiable Planning with Steerable Convolutions

Linfeng Zhao · Xupeng Zhu · LINGZHI KONG · Robin Walters · Lawson Wong

To achieve this, we draw inspiration from equivariant convolution networks and model the path planning problem as a set of signals over grids. We demonstrate that value iteration can be treated as a linear equivariant operator, which is effectively a steerable convolution. Building upon Value Iteration Networks (VIN), we propose a new Symmetric Planning (SymPlan) framework that incorporates rotation and reflection symmetry using steerable convolution networks. We evaluate our approach on four tasks: 2D navigation, visual navigation, 2 degrees of freedom (2-DOF) configuration space manipulation, and 2-DOF workspace manipulation. Our experimental results show that our symmetric planning algorithms significantly improve training efficiency and generalization performance compared to non-equivariant baselines, including VINs and GPPN.


In-Person Poster presentation / poster accept
#123
Transformer-based World Models Are Happy With 100k Interactions

Jan Robine · Marc Höftmann · Tobias Uelwer · Stefan Harmeling

Deep neural networks have been successful in many reinforcement learning settings. However, compared to human learners they are overly data hungry. To build a sample-efficient world model, we apply a transformer to real-world episodes in an autoregressive manner: not only the compact latent states and the taken actions but also the experienced or predicted rewards are fed into the transformer, so that it can attend flexibly to all three modalities at different time steps. The transformer allows our world model to access previous states directly, instead of viewing them through a compressed recurrent state. By utilizing the Transformer-XL architecture, it is able to learn long-term dependencies while staying computationally efficient. Our transformer-based world model (TWM) generates meaningful, new experience, which is used to train a policy that outperforms previous model-free and model-based reinforcement learning algorithms on the Atari 100k benchmark. Our code is available at https://github.com/jrobine/twm.


In-Person Poster presentation / top 25% paper
#103
Adversarial Diversity in Hanabi

Brandon Cui · Andrei Lupu · Samuel Sokota · Hengyuan Hu · David Wu · Jakob Foerster

Many Dec-POMDPs admit a qualitatively diverse set of ''reasonable'' joint policies, where reasonableness is indicated by symmetry equivariance, non-sabotaging behaviour and the graceful degradation of performance when paired with ad-hoc partners. Some of the work in diversity literature is concerned with generating these policies. Unfortunately, existing methods fail to produce teams of agents that are simultaneously diverse, high performing, and reasonable. In this work, we propose a novel approach, adversarial diversity (ADVERSITY), which is designed for turn-based Dec-POMDPs with public actions. ADVERSITY relies on off-belief learning to encourage reasonableness and skill, and on ''repulsive'' fictitious transitions to encourage diversity. We use this approach to generate new agents with distinct but reasonable play styles for the card game Hanabi and open-source our agents to be used for future research on (ad-hoc) coordination.


In-Person Poster presentation / top 5% paper
#122
On the Sensitivity of Reward Inference to Misspecified Human Models

Joey Hong · Kush Bhatia · Anca Dragan

Inferring reward functions from human behavior is at the center of value alignment – aligning AI objectives with what we, humans, actually want. But doing so relies on models of how humans behave given their objectives. After decades of research in cognitive science, neuroscience, and behavioral economics, obtaining accurate human models remains an open research topic. This begs the question: how accurate do these models need to be in order for the reward inference to be accurate? On the one hand, if small errors in the model can lead to catastrophic error in inference, the entire framework of reward learning seems ill-fated, as we will never have perfect models of human behavior. On the other hand, if as our models improve, we can have a guarantee that reward accuracy also improves, this would show the benefit of more work on the modeling side. We study this question both theoretically and empirically. We do show that it is unfortunately possible to construct small adversarial biases in behavior that lead to arbitrarily large errors in the inferred reward. However, and arguably more importantly, we are also able to identify reasonable assumptions under which the reward inference error can be bounded linearly in the error in the human model. Finally, we verify our theoretical insights in discrete and continuous control tasks with simulated and human data.


In-Person Poster presentation / top 5% paper
#102
Fast and Precise: Adjusting Planning Horizon with Adaptive Subgoal Search

Michał Zawalski · Michał Tyrolski · Konrad Czechowski · Tomasz Odrzygóźdź · Damian Stachura · Piotr Piękos · Yuhuai Wu · Łukasz Kuciński · Piotr Miłoś

Complex reasoning problems contain states that vary in the computational cost required to determine the right action plan. To take advantage of this property, we propose Adaptive Subgoal Search (AdaSubS), a search method that adaptively adjusts the planning horizon. To this end, AdaSubS generates diverse sets of subgoals at different distances. A verification mechanism is employed to filter out unreachable subgoals swiftly, making it possible to focus on feasible further subgoals. In this way, AdaSubS benefits from the efficiency of planning with longer-term subgoals and the fine control with shorter-term ones, and thus scales well to difficult planning problems. We show that AdaSubS significantly surpasses hierarchical planning algorithms on three complex reasoning tasks: Sokoban, the Rubik’s Cube, and the inequality-proving benchmark INT.


In-Person Poster presentation / top 5% paper
#121
Moving Forward by Moving Backward: Embedding Action Impact over Action Semantics

Kuo-Hao Zeng · Luca Weihs · Roozbeh Mottaghi · Ali Farhadi

A common assumption when training embodied agents is that the impact of taking an action is stable; for instance, executing the ``move ahead'' action will always move the agent forward by a fixed distance, perhaps with some small amount of actuator-induced noise. This assumption is limiting; an agent may encounter settings that dramatically alter the impact of actions: a move ahead action on a wet floor may send the agent twice as far as it expects and using the same action with a broken wheel might transform the expected translation into a rotation. Instead of relying that the impact of an action stably reflects its pre-defined semantic meaning, we propose to model the impact of actions on-the-fly using latent embeddings. By combining these latent action embeddings with a novel, transformer-based, policy head, we design an Action Adaptive Policy (AAP). We evaluate our AAP on two challenging visual navigation tasks in the AI2-THOR and Habitat environments and show that our AAP is highly performant even when faced, at inference-time, with missing actions and, previously unseen, perturbed action spaces. Moreover, we observe significant improvement in robustness against these actions when evaluating in real-world scenarios.


In-Person Poster presentation / poster accept
#101
Provable Sim-to-real Transfer in Continuous Domain with Partial Observations

Jiachen Hu · Han Zhong · Chi Jin · Liwei Wang

Sim-to-real transfer, which trains RL agents in the simulated environments and then deploys them in the real world, has been widely used to overcome the limitations of gathering samples in the real world. Despite the empirical success of the sim-to-real transfer, its theoretical foundation is much less understood. In this paper, we study the sim-to-real transfer in continuous domain with partial observations, where the simulated environments and real-world environments are modeled by linear quadratic Gaussian (LQG) systems. We show that a popular robust adversarial training algorithm is capable of learning a policy from the simulated environment that is competitive to the optimal policy in the real-world environment. To achieve our results, we design a new algorithm for infinite-horizon average-cost LQGs and establish a regret bound that depends on the intrinsic complexity of the model class. Our algorithm crucially relies on a novel history clipping scheme, which might be of independent interest.


In-Person Poster presentation / top 25% paper
#120
Understanding and Adopting Rational Behavior by Bellman Score Estimation

Kuno Kim · Stefano Ermon

We are interested in solving a class of problems that seek to understand and adopt rational behavior from demonstrations. We may broadly classify these problems into four categories of reward identification, counterfactual analysis, behavior imitation, and behavior transfer. In this work, we make a key observation that knowing how changes in the underlying rewards affect the optimal behavior allows one to solve a variety of aforementioned problems. To a local approximation, this quantity is precisely captured by what we term the Bellman score, i.e gradient of log probabilities of the optimal policy with respect to the reward. We introduce the Bellman score operator which provably converges to the gradient of the infinite-horizon optimal Q-values with respect to the reward which can then be used to directly estimate the score. Guided by our theory, we derive a practical score-learning algorithm which can be used for score estimation in high-dimensional state-actions spaces. We show that score-learning can be used to reliably identify rewards, perform counterfactual predictions, achieve state-of-the-art behavior imitation, and transfer policies across environments.


In-Person Poster presentation / poster accept
#100
Using Both Demonstrations and Language Instructions to Efficiently Learn Robotic Tasks

Albert Yu · Raymond Mooney

Demonstrations and natural language instructions are two common ways to specify and teach robots novel tasks. However, for many complex tasks, a demonstration or language instruction alone contains ambiguities, preventing tasks from being specified clearly. In such cases, a combination of both a demonstration and an instruction more concisely and effectively conveys the task to the robot than either modality alone. To instantiate this problem setting, we train a single multi-task policy on a few hundred challenging robotic pick-and-place tasks and propose DeL-TaCo (Joint Demo-Language Task Conditioning), a method for conditioning a robotic policy on task embeddings comprised of two components: a visual demonstration and a language instruction. By allowing these two modalities to mutually disambiguate and clarify each other during novel task specification, DeL-TaCo (1) substantially decreases the teacher effort needed to specify a new task and (2) achieves better generalization performance on novel objects and instructions over previous task-conditioning methods. To our knowledge, this is the first work to show that simultaneously conditioning a multi-task robotic manipulation policy on both demonstration and language embeddings improves sample efficiency and generalization over conditioning on either modality alone.


In-Person Poster presentation / top 5% paper
#119
Dichotomy of Control: Separating What You Can Control from What You Cannot

Sherry Yang · Dale Schuurmans · Pieter Abbeel · Ofir Nachum

Future- or return-conditioned supervised learning is an emerging paradigm for offline reinforcement learning (RL), in which the future outcome (i.e., return) associated with a sequence of actions in an offline dataset is used as input to a policy trained to imitate those same actions. While return-conditioning is at the heart of popular algorithms such as decision transformer (DT), these methods tend to perform poorly in highly stochastic environments, where an occasional high return associated with a sequence of actions may be due more to the randomness of the environment than to the actions themselves. Such situations can lead to a learned policy that is inconsistent with its conditioning inputs; i.e., using the policy – while conditioned on a specific desired return – to act in the environment can lead to a distribution of real returns that is wildly different than desired. In this work, we propose the dichotomy of control (DoC), a future-conditioned supervised learning framework that separates mechanisms within a policy’s control (actions) from those outside of a policy’s control (environment stochasticity). We achieve this by conditioning the policy on a latent variable representation of the future and designing a mutual information constraint that removes any future information from the latent variable that is only due to randomness of the environment. Theoretically, we show that DoC yields policies that are consistent with their conditioning inputs, ensuring that conditioning a learned policy on a desired high-return future outcome will correctly induce high-return behavior. Empirically, we show that DoC is able to achieve significantly better performance than DT on environments with highly stochastic rewards (e.g., Bandit) and transitions (e.g., FrozenLake).


In-Person Poster presentation / poster accept
#99
Adversarial Imitation Learning with Preferences

Aleksandar Taranovic · Andras Kupcsik · Niklas Freymuth · Gerhard Neumann

Designing an accurate and explainable reward function for many Reinforcement Learning tasks is a cumbersome and tedious process. Instead, learning policies directly from the feedback of human teachers naturally integrates human domain knowledge into the policy optimization process. However, different feedback modalities, such as demonstrations and preferences, provide distinct benefits and disadvantages. For example, demonstrations convey a lot of information about the task but are often hard or costly to obtain from real experts while preferences typically contain less information but are in most cases cheap to generate. However, existing methods centered around human feedback mostly focus on a single teaching modality, causing them to miss out on important training data while making them less intuitive to use.In this paper we propose a novel method for policy learning that incorporates two different feedback types, namely \emph{demonstrations} and \emph{preferences}. To this end, we make use of the connection between discriminator training and density ratio estimation to incorporate preferences into the popular Adversarial Imitation Learning paradigm. This insight allows us to express loss functions over both demonstrations and preferences in a unified framework.Besides expert demonstrations, we are also able to learn from imperfect ones and combine them with preferences to achieve improved task performance.We experimentally validate the effectiveness of combining both preferences and demonstrations on common benchmarks and also show that our method can efficiently learn challenging robot manipulation tasks.


In-Person Poster presentation / top 25% paper
#118
SMART: Self-supervised Multi-task pretrAining with contRol Transformers

Yanchao Sun · shuang ma · Ratnesh Madaan · Rogerio Bonatti · Furong Huang · Ashish Kapoor

Self-supervised pretraining has been extensively studied in language and vision domains, where a unified model can be easily adapted to various downstream tasks by pretraining representations without explicit labels. When it comes to sequential decision-making tasks, however, it is difficult to properly design such a pretraining approach that can cope with both high-dimensional perceptual information and the complexity of sequential control over long interaction horizons. The challenge becomes combinatorially more complex if we want to pretrain representations amenable to a large variety of tasks. To tackle this problem, in this work, we formulate a general pretraining-finetuning pipeline for sequential decision making, under which we propose a generic pretraining framework \textit{Self-supervised Multi-task pretrAining with contRol Transformer (SMART)}. By systematically investigating pretraining regimes, we carefully design a Control Transformer (CT) coupled with a novel control-centric pretraining objective in a self-supervised manner. SMART encourages the representation to capture the common essential information relevant to short-term control and long-term control, which is transferrable across tasks. We show by extensive experiments in DeepMind Control Suite that SMART significantly improves the learning efficiency among seen and unseen downstream tasks and domains under different learning scenarios including Imitation Learning (IL) and Reinforcement Learning (RL). Benefiting from the proposed control-centric objective, SMART is resilient to distribution shift between pretraining and finetuning, and even works well with low-quality pretraining datasets that are randomly collected. The codebase, pretrained models and datasets are provided at https://github.com/microsoft/smart.


In-Person Poster presentation / top 25% paper
#45
Hyperbolic Deep Reinforcement Learning

Edoardo Cetin · Benjamin Chamberlain · Michael Bronstein · Jonathan J Hunt

In deep reinforcement learning (RL), useful information about the state is inherently tied to its possible future successors. Consequently, encoding features that capture the hierarchical relationships between states into the model's latent representations is often conducive to recovering effective policies. In this work, we study a new class of deep RL algorithms that promote encoding such relationships by using hyperbolic space to model latent representations. However, we find that a naive application of existing methodology from the hyperbolic deep learning literature leads to fatal instabilities due to the non-stationarity and variance characterizing common gradient estimators in RL. Hence, we design a new general method that directly addresses such optimization challenges and enables stable end-to-end learning with deep hyperbolic representations. We empirically validate our framework by applying it to popular on-policy and off-policy RL algorithms on the Procgen and Atari 100K benchmarks, attaining near universal performance and generalization benefits. Given its natural fit, we hope this work will inspire future RL research to consider hyperbolic representations as a standard tool.


In-Person Poster presentation / poster accept
#98
Efficient Planning in a Compact Latent Action Space

Zhengyao Jiang · Tianjun Zhang · Michael Janner · Yueying Li · Tim Rocktaeschel · Edward Grefenstette · Yuandong Tian

Planning-based reinforcement learning has shown strong performance in tasks in discrete and low-dimensional continuous action spaces. However, planning usually brings significant computational overhead for decision making, so scaling such methods to high-dimensional action spaces remains challenging. To advance efficient planning for high-dimensional continuous control, we propose Trajectory Autoencoding Planner (TAP), which learns low-dimensional latent action codes with a state-conditional VQ-VAE. The decoder of the VQ-VAE thus serves as a novel dynamics model that takes latent actions and current state as input and reconstructs long-horizon trajectories. During inference time, given a starting state, TAP searches over discrete latent actions to find trajectories that have both high probability under the training distribution and high predicted cumulative reward. Empirical evaluation in the offline RL setting demonstrates low decision latency which is indifferent to the growing raw action dimensionality. For Adroit robotic hand manipulation tasks with high-dimensional continuous action space, TAP surpasses existing model-based methods by a large margin and also beats strong model-free actor-critic baselines.


In-Person Poster presentation / poster accept
#97
Stateful Active Facilitator: Coordination and Environmental Heterogeneity in Cooperative Multi-Agent Reinforcement Learning

Dianbo Liu · Vedant Shah · Oussama Boussif · Cristian Meo · Anirudh Goyal · Tianmin Shu · Michael Mozer · Nicolas Heess · Yoshua Bengio

In cooperative multi-agent reinforcement learning, a team of agents works togetherto achieve a common goal. Different environments or tasks may require varyingdegrees of coordination among agents in order to achieve the goal in an optimalway. The nature of coordination will depend on properties of the environment—itsspatial layout, distribution of obstacles, dynamics, etc. We term this variationof properties within an environment as heterogeneity. Existing literature has notsufficiently addressed the fact that different environments may have different levelsof heterogeneity. We formalize the notions of coordination level and heterogeneitylevel of an environment and present HECOGrid, a suite of multi-agent RLenvironments that facilitates empirical evaluation of different MARL approachesacross different levels of coordination and environmental heterogeneity by providinga quantitative control over coordination and heterogeneity levels of theenvironment. Further, we propose a Centralized Training Decentralized Executionlearning approach called Stateful Active Facilitator (SAF) that enables agents towork efficiently in high-coordination and high-heterogeneity environments througha differentiable and shared knowledge source used during training and dynamicselection from a shared pool of policies. We evaluate SAF and compare its performanceagainst baselines IPPO and MAPPO on HECOGrid. Our results showthat SAF consistently outperforms the baselines across different tasks and differentheterogeneity and coordination levels.


In-Person Poster presentation / poster accept
#116
A Mixture-of-Expert Approach to RL-based Dialogue Management

Yinlam Chow · Azamat Tulepbergenov · Ofir Nachum · Dhawal Gupta · Moonkyung Ryu · Mohammad Ghavamzadeh · Craig Boutilier

Despite recent advancements in language models (LMs), their application to dialogue management (DM) problems and ability to carry on rich conversations remain a challenge. We use reinforcement learning (RL) to develop a dialogue agent that avoids being short-sighted (outputting generic utterances) and maximizes overall user satisfaction. Most existing RL approaches to DM train the agent at the word-level, and thus, have to deal with a combinatorially complex action space even for a medium-size vocabulary. As a result, they struggle to produce a successful and engaging dialogue even if they are warm-started with a pre-trained LM. To address this issue, we develop a RL-based DM using a novel mixture of expert language model (MoE-LM) that consists of (i) a LM capable of learning diverse semantics for conversation histories, (ii) a number of specialized LMs (or experts) capable of generating utterances corresponding to a particular attribute or personality, and (iii) a RL-based DM that performs dialogue planning with the utterances generated by the experts. Our MoE approach provides greater flexibility to generate sensible utterances with different intents and allows RL to focus on conversational-level DM. We compare it with SOTA baselines on open-domain dialogues and demonstrate its effectiveness both in terms of the diversity and sensibility of the generated utterances and the overall DM performance.


In-Person Poster presentation / poster accept
#96
Efficient Deep Reinforcement Learning Requires Regulating Overfitting

Qiyang Li · Aviral Kumar · Ilya Kostrikov · Sergey Levine

Deep reinforcement learning algorithms that learn policies by trial-and-error must learn from limited amounts of data collected by actively interacting with the environment. While many prior works have shown that proper regularization techniques are crucial for enabling data-efficient RL, a general understanding of the bottlenecks in data-efficient RL has remained unclear. Consequently, it has been difficult to devise a universal technique that works well across all domains. In this paper, we attempt to understand the primary bottleneck in sample-efficient deep RL by examining several potential hypotheses such as non-stationarity, excessive action distribution shift, and overfitting. We perform thorough empirical analysis on state-based DeepMind control suite (DMC) tasks in a controlled and systematic way to show that high temporal-difference (TD) error on the validation set of transitions is the main culprit that severely affects the performance of deep RL algorithms, and prior methods that lead to good performance do in fact, control the validation TD error to be low. This observation gives us a robust principle for making deep RL efficient: we can hill-climb on the validation TD error by utilizing any form of regularization techniques from supervised learning. We show that a simple online model selection method that targets the validation TD error is effective across state-based DMC and Gym tasks.


In-Person Poster presentation / poster accept
#115
Large Language Models are Human-Level Prompt Engineers

Yongchao Zhou · Andrei Muresanu · Ziwen Han · Keiran Paster · Silviu Pitis · Harris Chan · Jimmy Ba

By conditioning on natural language instructions, large language models (LLMs) have displayed impressive capabilities as general-purpose computers. However, task performance depends significantly on the quality of the prompt used to steer the model, and most effective prompts have been handcrafted by humans. Inspired by classical program synthesis and the human approach to prompt engineering, we propose Automatic Prompt Engineer (APE) for automatic instruction generation and selection. In our method, we treat the instruction as the "program," optimized by searching over a pool of instruction candidates proposed by an LLM in order to maximize a chosen score function. To evaluate the quality of the selected instruction, we evaluate the zero-shot performance of another LLM following the selected instruction. Experiments on 24 NLP tasks show that our automatically generated instructions outperform the prior LLM baseline by a large margin and achieve better or comparable performance to the instructions generated by human annotators on 21/24 tasks. We conduct extensive qualitative and quantitative analyses to explore the performance of APE. We show that APE-engineered prompts can be applied to steer models toward truthfulness and/or informativeness, as well as to improve few-shot learning performance by simply prepending them to standard in-context learning prompts.


In-Person Poster presentation / poster accept
#134
Holistic Adversarially Robust Pruning

Qi Zhao · Christian Wressnegger

Neural networks can be drastically shrunk in size by removing redundant parameters. While crucial for the deployment on resource-constraint hardware, oftentimes, compression comes with a severe drop in accuracy and lack of adversarial robustness. Despite recent advances, counteracting both aspects has only succeeded for moderate compression rates so far. We propose a novel method, HARP, that copes with aggressive pruning significantly better than prior work. For this, we consider the network holistically. We learn a global compression strategy that optimizes how many parameters (compression rate) and which parameters (scoring connections) to prune specific to each layer individually. Our method fine-tunes an existing model with dynamic regularization, that follows a step-wise incremental function balancing the different objectives. It starts by favoring robustness before shifting focus on reaching the target compression rate and only then handles the objectives equally. The learned compression strategies allow us to maintain the pre-trained model’s natural accuracy and its adversarial robustness for a reduction by 99% of the network’s original size. Moreover, we observe a crucial influence of non-uniform compression across layers. The implementation of HARP is publicly available at https://intellisec.de/research/harp.


In-Person Poster presentation / poster accept
#153
FaiREE: fair classification with finite-sample and distribution-free guarantee

Puheng Li · James Y Zou · Linjun Zhang

Algorithmic fairness plays an increasingly critical role in machine learning research. Several group fairness notions and algorithms have been proposed. However, the fairness guarantee of existing fair classification methods mainly depend on specific data distributional assumptions, often requiring large sample sizes, and fairness could be violated when there is a modest number of samples, which is often the case in practice. In this paper, we propose FaiREE, a fair classification algorithm which can satisfy group fairness constraints with finite-sample and distribution-free theoretical guarantees. FaiREE can be adapted to satisfying various group fairness notions (e.g., Equality of Opportunity, Equalized Odds, Demographic Parity, etc.) and achieve the optimal accuracy. These theoretical guarantees are further supported by experiments on both synthetic and real data. FaiREE is shown to have favorable performance over state-of-the-art algorithms.


In-Person Poster presentation / poster accept
#135
Efficient Certified Training and Robustness Verification of Neural ODEs

Mustafa Zeqiri · Mark N Müller · Marc Fischer · Martin Vechev

Neural Ordinary Differential Equations (NODEs) are a novel neural architecture, built around initial value problems with learned dynamics which are solved during inference. Thought to be inherently more robust against adversarial perturbations, they were recently shown to be vulnerable to strong adversarial attacks, highlighting the need for formal guarantees. However, despite significant progress in robustness verification for standard feed-forward architectures, the verification of high dimensional NODEs remains an open problem. In this work we address this challenge and propose GAINS, an analysis framework for NODEs combining three key ideas: (i) a novel class of ODE solvers, based on variable but discrete time steps, (ii) an efficient graph representation of solver trajectories, and (iii) a novel abstraction algorithm operating on this graph representation. Together, these advances enable the efficient analysis and certified training of high-dimensional NODEs, by reducing the runtime from an intractable $\mathcal{O}(\exp(d)+\exp(T))$ to $\mathcal{O}(d+T^2\log^2T)$ in the dimensionality $d$ and integration time $T$. In an extensive evaluation on computer vision (MNIST and Fashion-MNIST) and time-series forecasting (Physio-Net) problems, we demonstrate the effectiveness of both our certified training and verification methods.


In-Person Poster presentation / poster accept
#154
ESD: Expected Squared Difference as a Tuning-Free Trainable Calibration Measure

Hee Suk Yoon · Joshua Tian Jin Tee · Eunseop Yoon · Sunjae Yoon · Gwangsu Kim · Yingzhen Li · Chang Yoo

Studies have shown that modern neural networks tend to be poorly calibrated due to over-confident predictions. Traditionally, post-processing methods have been used to calibrate the model after training. In recent years, various trainable calibration measures have been proposed to incorporate them directly into the training process. However, these methods all incorporate internal hyperparameters, and the performance of these calibration objectives relies on tuning these hyperparameters, incurring more computational costs as the size of neural networks and datasets become larger. As such, we present Expected Squared Difference (ESD), a tuning-free (i.e., hyperparameter-free) trainable calibration objective loss, where we view the calibration error from the perspective of the squared difference between the two expectations. With extensive experiments on several architectures (CNNs, Transformers) and datasets, we demonstrate that (1) incorporating ESD into the training improves model calibration in various batch size settings without the need for internal hyperparameter tuning, (2) ESD yields the best-calibrated results compared with previous approaches, and (3) ESD drastically improves the computational costs required for calibration during training due to the absence of internal hyperparameter. The code is publicly accessible at https://github.com/hee-suk-yoon/ESD.


In-Person Poster presentation / poster accept
#136
How to Exploit Hyperspherical Embeddings for Out-of-Distribution Detection?

Yifei Ming · Yiyou Sun · Ousmane Dia · Yixuan Li

Out-of-distribution (OOD) detection is a critical task for reliable machine learning. Recent advances in representation learning give rise to distance-based OOD detection, where testing samples are detected as OOD if they are relatively far away from the centroids or prototypes of in-distribution (ID) classes. However, prior methods directly take off-the-shelf contrastive losses that suffice for classifying ID samples, but are not optimally designed when test inputs contain OOD samples. In this work, we propose CIDER, a novel representation learning framework that exploits hyperspherical embeddings for OOD detection. CIDER jointly optimizes two losses to promote strong ID-OOD separability: a dispersion loss that promotes large angular distances among different class prototypes, and a compactness loss that encourages samples to be close to their class prototypes. We analyze and establish the unexplored relationship between OOD detection performance and the embedding properties in the hyperspherical space, and demonstrate the importance of dispersion and compactness. CIDER establishes superior performance, outperforming the latest rival by 13.33% in FPR95. Code is available at https://github.com/deeplearning-wisc/cider.


In-Person Poster presentation / poster accept
#155
GeneFace: Generalized and High-Fidelity Audio-Driven 3D Talking Face Synthesis

Zhenhui Ye · Ziyue Jiang · Yi Ren · Jinglin Liu · Jinzheng He · Zhou Zhao

Generating photo-realistic video portraits with arbitrary speech audio is a crucial problem in film-making and virtual reality. Recently, several works explore the usage of neural radiance field (NeRF) in this task to improve 3D realness and image fidelity. However, the generalizability of previous NeRF-based methods is limited by the small scale of training data. In this work, we propose GeneFace, a generalized and high-fidelity NeRF-based talking face generation method, which can generate natural results corresponding to various out-of-domain audio. Specifically, we learn a variational motion generator on a large lip-reading corpus, and introduce a domain adaptative post-net to calibrate the result. Moreover, we learn a NeRF-based renderer conditioned on the predicted motion. A head-aware torso-NeRF is proposed to eliminate the head-torso separation problem. Extensive experiments show that our method achieves more generalized and high-fidelity talking face generation compared to previous methods. Video samples and source code are available at https://geneface.github.io .


In-Person Poster presentation / poster accept
#137
Easy Differentially Private Linear Regression

Kareem Amin · Matthew Joseph · Mónica Ribero · Sergei Vassilvitskii

Linear regression is a fundamental tool for statistical analysis. This has motivated the development of linear regression methods that also satisfy differential privacy and thus guarantee that the learned model reveals little about any one data point used to construct it. However, existing differentially private solutions assume that the end user can easily specify good data bounds and hyperparameters. Both present significant practical obstacles. In this paper, we study an algorithm which uses the exponential mechanism to select a model with high Tukey depth from a collection of non-private regression models. Given $n$ samples of $d$-dimensional data used to train $m$ models, we construct an efficient analogue using an approximate Tukey depth that runs in time $O(d^2n + dm\log(m))$. We find that this algorithm obtains strong empirical performance in the data-rich setting with no data bounds or hyperparameter selection required.


In-Person Poster presentation / poster accept
#156
Revisiting Robustness in Graph Machine Learning

Lukas Gosch · Daniel Sturm · Simon Geisler · Stephan Günnemann

Many works show that node-level predictions of Graph Neural Networks (GNNs) are unrobust to small, often termed adversarial, changes to the graph structure. However, because manual inspection of a graph is difficult, it is unclear if the studied perturbations always preserve a core assumption of adversarial examples: that of unchanged semantic content. To address this problem, we introduce a more principled notion of an adversarial graph, which is aware of semantic content change. Using Contextual Stochastic Block Models (CSBMs) and real-world graphs, our results suggest: $i)$ for a majority of nodes the prevalent perturbation models include a large fraction of perturbed graphs violating the unchanged semantics assumption; $ii)$ surprisingly, all assessed GNNs show over-robustness - that is robustness beyond the point of semantic change. We find this to be a complementary phenomenon to adversarial examples and show that including the label-structure of the training graph into the inference process of GNNs significantly reduces over-robustness, while having a positive effect on test accuracy and adversarial robustness. Theoretically, leveraging our new semantics-aware notion of robustness, we prove that there is no robustness-accuracy tradeoff for inductively classifying a newly added node.


In-Person Poster presentation / poster accept
#138
CANIFE: Crafting Canaries for Empirical Privacy Measurement in Federated Learning

Samuel Maddock · Alexandre Sablayrolles · Pierre Stock

Federated Learning (FL) is a setting for training machine learning models in distributed environments where the clients do not share their raw data but instead send model updates to a server. However, model updates can be subject to attacks and leak private information. Differential Privacy (DP) is a leading mitigation strategy which involves adding noise to clipped model updates, trading off performance for strong theoretical privacy guarantees. Previous work has shown that the threat model of DP is conservative and that the obtained guarantees may be vacuous or may overestimate information leakage in practice. In this paper, we aim to achieve a tighter measurement of the model exposure by considering a realistic threat model. We propose a novel method, CANIFE, that uses canaries - carefully crafted samples by a strong adversary to evaluate the empirical privacy of a training round. We apply this attack to vision models trained on CIFAR-10 and CelebA and to language models trained on Sent140 and Shakespeare. In particular, in realistic FL scenarios, we demonstrate that the empirical per-round epsilon obtained with CANIFE is 4 -- 5$\times$ lower than the theoretical bound.


In-Person Poster presentation / poster accept
#157
Tuning Frequency Bias in Neural Network Training with Nonuniform Data

Annan Yu · Yunan Yang · Alex Townsend

Small generalization errors of over-parameterized neural networks (NNs) can be partially explained by the frequency biasing phenomenon, where gradient-based algorithms minimize the low-frequency misfit before reducing the high-frequency residuals. Using the Neural Tangent Kernel (NTK), one can provide a theoretically rigorous analysis for training where data are drawn from constant or piecewise-constant probability densities. Since most training data sets are not drawn from such distributions, we use the NTK model and a data-dependent quadrature rule to theoretically quantify the frequency biasing of NN training given fully nonuniform data. By replacing the loss function with a carefully selected Sobolev norm, we can further amplify, dampen, counterbalance, or reverse the intrinsic frequency biasing in NN training.


In-Person Poster presentation / poster accept
#139
Adaptive Optimization in the $\infty$-Width Limit

Etai Littwin · Greg Yang

Recent works have developed detailed understanding of large neural networks' behaviors via their infinite-width limits, e.g., the neural tangent kernel (NTK) and the feature learning ($\mu$) limits. These theories were developed for stochastic gradient descent. Yet, in practice, all large NN are trained using Adam or other adaptive gradient optimizers (AGO), which are not covered by such previous works. Here, we close this gap via the Tensor Programs framework. Specifically, for deep MLPs, we derive the NTK and $\mu$ parametrizations as well as their infinite-width limits. We find 1) The NTK limit of AGO, in contrast to that of SGD, now depends nonlinearly on the loss derivative but nevertheless still fails to learn features; 2) this is fixed by the $\mu$ limit of AGO (as in the case of SGD). To obtain these results, we extend the Tensor Programs language with a new instruction that allows one to express the gradient processing done by AGOs.


In-Person Poster presentation / poster accept
#158
How Sharpness-Aware Minimization Minimizes Sharpness?

Kaiyue Wen · Tengyu Ma · Zhiyuan Li

Sharpness-Aware Minimization (SAM) is a highly effective regularization technique for improving the generalization of deep neural networks for various settings. However, the underlying working of SAM remains elusive because of various intriguing approximations in the theoretical characterizations. SAM intends to penalize a notion of sharpness of the model but implements a computationally efficient variant; moreover, a third notion of sharpness was used for proving generalization guarantees. The subtle differences in these notions of sharpness can indeed lead to significantly different empirical results. This paper rigorously nails down the exact sharpness notion that SAM regularizes and clarifies the underlying mechanism. We also show that the two steps of approximations in the original motivation of SAM individually lead to inaccurate local conclusions, but their combination accidentally reveals the correct effect, when full-batch gradients are applied. Furthermore, we also prove that the stochastic version of SAM in fact regularizes the third notion of sharpness mentioned above, which is most likely to be the preferred notion for practical performance. The key mechanism behind this intriguing phenomenon is the alignment between the gradient and the top eigenvector of Hessian when SAM is applied.


In-Person Poster presentation / poster accept
#140
Mini-batch $k$-means terminates within $O(d/\epsilon)$ iterations

Gregory Schwartzman

We answer the question: "Does \emph{local} progress (on batches) imply \emph{global} progress (on the entire dataset) for mini-batch $k$-means?". Specifically, we consider mini-batch $k$-means which terminates only when the improvement in the quality of the clustering on the sampled batch is below some threshold.Although at first glance it appears that this algorithm might execute forever, we answer the above question in the affirmative and show that if the batch is of size $\tilde{\Omega}((d/\epsilon)^2)$, it must terminate within $O(d/\epsilon)$ iterations with high probability, where $d$ is the dimension of the input, and $\epsilon$ is a threshold parameter for termination. This is true \emph{regardless} of how the centers are initialized. When the algorithm is initialized with the $k$-means++ initialization scheme, it achieves an approximation ratio of $O(\log k)$ (the same as the full-batch version). Finally, we show the applicability of our results to the mini-batch $k$-means algorithm implemented in the scikit-learn (sklearn) python library.


In-Person Poster presentation / poster accept
#159
Fundamental limits on the robustness of image classifiers

Zheng Dai · David Gifford

We prove that image classifiers are fundamentally sensitive to small perturbations in their inputs. Specifically, we show that given some image space of $n$-by-$n$ images, all but a tiny fraction of images in any image class induced over that space can be moved outside that class by adding some perturbation whose $p$-norm is $O(n^{1/\max{(p,1)}})$, as long as that image class takes up at most half of the image space. We then show that $O(n^{1/\max{(p,1)}})$ is asymptotically optimal. Finally, we show that an increase in the bit depth of the image space leads to a loss in robustness. We supplement our results with a discussion of their implications for vision systems.


In-Person Poster presentation / poster accept
#141
Offline Congestion Games: How Feedback Type Affects Data Coverage Requirement

Haozhe Jiang · Qiwen Cui · Zhihan Xiong · Maryam Fazel · Simon Du

This paper investigates when one can efficiently recover an approximate Nash Equilibrium (NE) in offline congestion games. The existing dataset coverage assumption in offline general-sum games inevitably incurs a dependency on the number of actions, which can be exponentially large in congestion games. We consider three different types of feedback with decreasing revealed information. Starting from the facility-level (a.k.a., semi-bandit) feedback, we propose a novel one-unit deviation coverage condition and show a pessimism-type algorithm that can recover an approximate NE. For the agent-level (a.k.a., bandit) feedback setting, interestingly, we show the one-unit deviation coverage condition is not sufficient. On the other hand, we convert the game to multi-agent linear bandits and show that with a generalized data coverage assumption in offline linear bandits, we can efficiently recover the approximate NE. Lastly, we consider a novel type of feedback, the game-level feedback where only the total reward from all agents is revealed. Again, we show the coverage assumption for the agent-level feedback setting is insufficient in the game-level feedback setting, and with a stronger version of the data coverage assumption for linear bandits, we can recover an approximate NE. Together, our results constitute the first study of offline congestion games and imply formal separations between different types of feedback.


In-Person Poster presentation / poster accept
#160
Interpretations of Domain Adaptations via Layer Variational Analysis

Huan-Hsin Tseng · Hsin-Yi Lin · Kuo-Hsuan Hung · Yu Tsao

Transfer learning is known to perform efficiently in many applications empirically, yet limited literature reports the mechanism behind the scene. This study establishes both formal derivations and heuristic analysis to formulate the theory of transfer learning in deep learning. Our framework utilizing layer variational analysis proves that the success of transfer learning can be guaranteed with corresponding data conditions. Moreover, our theoretical calculation yields intuitive interpretations towards the knowledge transfer process. Subsequently, an alternative method for network-based transfer learning is derived. The method shows an increase in efficiency and accuracy for domain adaptation. It is particularly advantageous when new domain data is sufficiently sparse during adaptation. Numerical experiments over diverse tasks validated our theory and verified that our analytic expression achieved better performance in domain adaptation than the gradient descent method.


In-Person Poster presentation / poster accept
#142
Long-Tailed Learning Requires Feature Learning

Thomas Laurent · James von Brecht · Xavier Bresson

We propose a simple data model inspired from natural data such as text or images, and use it to study the importance of learning features in order to achieve good generalization. Our data model follows a long-tailed distribution in the sense that some rare and uncommon subcategories have few representatives in the training set. In this context we provide evidence that a learner succeeds if and only if it identifies the correct features, and moreover derive non-asymptotic generalization error bounds that precisely quantify the penalty that one must pay for not learning features.


In-Person Poster presentation / poster accept
#161
Generalization Bounds for Federated Learning: Fast Rates, Unparticipating Clients and Unbounded Losses

Xiaolin Hu · Shaojie Li · Yong Liu

In {federated learning}, the underlying data distributions may be different across clients. This paper provides a theoretical analysis of generalization error of {federated learning}, which captures both heterogeneity and relatedness of the distributions. In particular, we assume that the heterogeneous distributions are sampled from a meta-distribution. In this two-level distribution framework, we characterize the generalization error not only for clients participating in the training but also for unparticipating clients. We first show that the generalization error for unparticipating clients can be bounded by participating generalization error and participating gap caused by clients' sampling. We further establish fast learning bounds of order $\mathcal{O}(\frac{1}{mn} + \frac{1}{m})$ for unparticipating clients, where $m$ is the number of clients and $n$ is the sample size at each client. To our knowledge, the obtained fast bounds are state-of-the-art in the two-level distribution framework. Moreover, previous theoretical results mostly require the loss function to be bounded. We derive convergence bounds of order $\mathcal{O}(\frac{1}{\sqrt{mn}} + \frac{1}{\sqrt{m}})$ under unbounded assumptions, including sub-exponential and sub-Weibull losses.


In-Person Poster presentation / poster accept
#143
KwikBucks: Correlation Clustering with Cheap-Weak and Expensive-Strong Signals

Sandeep Silwal · Sara Ahmadian · Andrew Nystrom · Andrew McCallum · Deepak Ramachandran · Seyed Mehran Kazemi

The unprecedented rate at which the sizes of machine learning (ML) models are growing necessitates novel approaches to enable efficient and scalable solutions. We contribute to this line of work by studying a novel version of the Budgeted Correlation Clustering problem (\bcc) where along with a limited number of queries to an expensive oracle for node similarities (e.g. a large ML model), we have unlimited access to a cheaper but less accurate second oracle. Our formulation is inspired by many practical scenarios where coarse approximations of the expensive similarity metric can be efficiently obtained via weaker models. We develop a theoretically motivated algorithm in this setting that leverages the cheap oracle to judiciously query the strong oracle while maintaining high clustering quality. We empirically demonstrate gains in query minimization and clustering metrics on a variety of datasets with diverse strong and cheap oracles. Most notably, we demonstrate a practical application in text clustering based on expensive cross-attention language models by showing that cheaper (but weaker) embedding-based models can be leveraged to substantially reduce the number of inference calls to the former.


In-Person Poster presentation / poster accept
#162
Robust Fair Clustering: A Novel Fairness Attack and Defense Framework

Anshuman Chhabra · Peizhao Li · Prasant Mohapatra · Hongfu Liu

Clustering algorithms are widely used in many societal resource allocation applications, such as loan approvals and candidate recruitment, among others, and hence, biased or unfair model outputs can adversely impact individuals that rely on these applications. To this end, many $\textit{fair}$ clustering approaches have been recently proposed to counteract this issue. Due to the potential for significant harm, it is essential to ensure that fair clustering algorithms provide consistently fair outputs even under adversarial influence. However, fair clustering algorithms have not been studied from an adversarial attack perspective. In contrast to previous research, we seek to bridge this gap and conduct a robustness analysis against fair clustering by proposing a novel $\textit{black-box fairness attack}$. Through comprehensive experiments, we find that state-of-the-art models are highly susceptible to our attack as it can reduce their fairness performance significantly. Finally, we propose Consensus Fair Clustering (CFC), the first $\textit{robust fair clustering}$ approach that transforms consensus clustering into a fair graph partitioning problem, and iteratively learns to generate fair cluster outputs. Experimentally, we observe that CFC is highly robust to the proposed attack and is thus a truly robust fair clustering alternative.


In-Person Poster presentation / poster accept
#144
Link Prediction with Non-Contrastive Learning

William Shiao · Zhichun Guo · Tong Zhao · Evangelos Papalexakis · Yozen Liu · Neil Shah

Graph neural networks (GNNs) are prominent in the graph machine learning domain, owing to their strong performance across various tasks. A recent focal area is the space of graph self-supervised learning (SSL), which aims to derive useful node representations without labeled data. Notably, many state-of-the-art graph SSL methods are contrastive methods, which use a combination of positive and negative samples to learn node representations. Owing to challenges in negative sampling (slowness and model sensitivity), recent literature introduced non-contrastive methods, which instead only use positive samples. Though such methods have shown promising performance in node-level tasks, their suitability for link prediction tasks, which are concerned with predicting link existence between pairs of nodes (and have broad applicability to recommendation systems contexts) is yet unexplored. In this work, we extensively evaluate the performance of existing non-contrastive methods for link prediction in both transductive and inductive settings. While most existing non-contrastive methods perform poorly overall, we find that, surprisingly, BGRL generally performs well in transductive settings. However, it performs poorly in the more realistic inductive settings where the model has to generalize to links to/from unseen nodes. We find that non-contrastive models tend to overfit to the training graph and use this analysis to propose T-BGRL, a novel non-contrastive framework that incorporates cheap corruptions to improve the generalization ability of the model. This simple modification strongly improves inductive performance in 5/6 of our datasets, with up to a 120% improvement in Hits@50 - all with comparable speed to other non-contrastive baselines, and up to $14\times$ faster than the best-performing contrastive baseline. Our work imparts interesting findings about non-contrastive learning for link prediction and paves the way for future researchers to further expand upon this area.


In-Person Poster presentation / poster accept
#163
Learning Rates as a Function of Batch Size: A Random Matrix Theory Approach to Neural Network Training

Diego Granziol · Stefan Zohren · S Roberts

We study the effect of mini-batching on the loss landscape of deep neural networks using spiked, field-dependent random matrix theory. We demonstrate that the magnitude of the extremal values of the batch Hessian are larger than those of the empirical Hessian. We also derive similar results for the Generalised Gauss-Newton matrix approximation of the Hessian. As a consequence of our theorems we derive an analytical expressions for the maximal learning rates as a function of batch size, informing practical training regimens for both stochastic gradient descent (linear scaling) and adaptive algorithms, such as Adam (square root scaling), for smooth, non-convex deep neural networks. Whilst the linear scaling for stochastic gradient descent has been derived under more restrictive conditions, which we generalise, the square root scaling rule for adaptive optimisers is, to our knowledge, completely novel. We validate our claims on the VGG/WideResNet architectures on the CIFAR-100 and ImageNet data sets. Based on our investigations of the sub-sampled Hessian we develop a stochastic Lanczos quadrature based on the fly learning rate and momentum learner, which avoids the need for expensive multiple evaluations for these key hyper-parameters and shows good preliminary results on the Pre-Residual Architecture for CIFAR-100. We further investigate the similarity between the Hessian spectrum of a multi-layer perceptron, trained on Gaussian mixture data, compared to that of deep neural networks trained on natural images. We find striking similarities, with both exhibiting rank degeneracy, a bulk spectrum and outliers to that spectrum. Furthermore, we show that ZCA whitening can remove such outliers early on in training before class separation occurs, but that outliers persist in later training.


In-Person Poster presentation / poster accept
#145
Towards a Unified Theoretical Understanding of Non-contrastive Learning via Rank Differential Mechanism

Zhijian Zhuo · Yifei Wang · Jinwen Ma · Yisen Wang

Recently, a variety of methods under the name of non-contrastive learning (like BYOL, SimSiam, SwAV, DINO) show that when equipped with some asymmetric architectural designs, aligning positive pairs alone is sufficient to attain good performance in self-supervised visual learning. Despite some understandings of some specific modules (like the predictor in BYOL), there is yet no unified theoretical understanding of how these seemingly different asymmetric designs can all avoid feature collapse, particularly considering methods that also work without the predictor (like DINO). In this work, we propose a unified theoretical understanding for existing variants of non-contrastive learning. Our theory named Rank Differential Mechanism (RDM) shows that all these asymmetric designs create a consistent rank difference in their dual-branch output features. This rank difference will provably lead to an improvement of effective dimensionality and alleviate either complete or dimensional feature collapse. Different from previous theories, our RDM theory is applicable to different asymmetric designs (with and without the predictor), and thus can serve as a unified understanding of existing non-contrastive learning methods. Besides, our RDM theory also provides practical guidelines for designing many new non-contrastive variants. We show that these variants indeed achieve comparable performance to existing methods on benchmark datasets, and some of them even outperform the baselines. Our code is available at \url{https://github.com/PKU-ML/Rank-Differential-Mechanism}.


In-Person Poster presentation / top 25% paper
#164
DINO as a von Mises-Fisher mixture model

Hariprasath Govindarajan · Per Sidén · Jacob Roll · Fredrik Lindsten

Self-distillation methods using Siamese networks are popular for self-supervised pre-training. DINO is one such method based on a cross-entropy loss between $K$-dimensional probability vectors, obtained by applying a softmax function to the dot product between representations and learnt prototypes. Given the fact that the learned representations are $L^2$-normalized, we show that DINO and its derivatives, such as iBOT, can be interpreted as a mixture model of von Mises-Fisher components. With this interpretation, DINO assumes equal precision for all components when the prototypes are also $L^2$-normalized. Using this insight we propose DINO-vMF, that adds appropriate normalization constants when computing the cluster assignment probabilities. Unlike DINO, DINO-vMF is stable also for the larger ViT-Base model with unnormalized prototypes. We show that the added flexibility of the mixture model is beneficial in terms of better image representations. The DINO-vMF pre-trained model consistently performs better than DINO on a range of downstream tasks. We obtain similar improvements for iBOT-vMF vs iBOT and thereby show the relevance of our proposed modification also for other methods derived from DINO.


In-Person Poster presentation / top 25% paper
#146
Unsupervised Meta-learning via Few-shot Pseudo-supervised Contrastive Learning

Huiwon Jang · Hankook Lee · Jinwoo Shin

Unsupervised meta-learning aims to learn generalizable knowledge across a distribution of tasks constructed from unlabeled data. Here, the main challenge is how to construct diverse tasks for meta-learning without label information; recent works have proposed to create, e.g., pseudo-labeling via pretrained representations or creating synthetic samples via generative models. However, such a task construction strategy is fundamentally limited due to heavy reliance on the immutable pseudo-labels during meta-learning and the quality of the representations or the generated samples. To overcome the limitations, we propose a simple yet effective unsupervised meta-learning framework, coined Pseudo-supervised Contrast (PsCo), for few-shot classification. We are inspired by the recent self-supervised learning literature; PsCo utilizes a momentum network and a queue of previous batches to improve pseudo-labeling and construct diverse tasks in a progressive manner. Our extensive experiments demonstrate that PsCo outperforms existing unsupervised meta-learning methods under various in-domain and cross-domain few-shot classification benchmarks. We also validate that PsCo is easily scalable to a large-scale benchmark, while recent prior-art meta-schemes are not.


In-Person Poster presentation / top 5% paper
#165
Honorable Mention
On the duality between contrastive and non-contrastive self-supervised learning

Quentin Garrido · Yubei Chen · Adrien Bardes · Laurent Najman · Yann LeCun

Recent approaches in self-supervised learning of image representations can be categorized into different families of methods and, in particular, can be divided into contrastive and non-contrastive approaches. While differences between the two families have been thoroughly discussed to motivate new approaches, we focus more on the theoretical similarities between them. By designing contrastive and covariance based non-contrastive criteria that can be related algebraically and shown to be equivalent under limited assumptions, we show how close those families can be. We further study popular methods and introduce variations of them, allowing us to relate this theoretical result to current practices and show the influence (or lack thereof) of design choices on downstream performance. Motivated by our equivalence result, we investigate the low performance of SimCLR and show how it can match VICReg's with careful hyperparameter tuning, improving significantly over known baselines. We also challenge the popular assumption that non-contrastive methods need large output dimensions. Our theoretical and quantitative results suggest that the numerical gaps between contrastive and non-contrastive methods in certain regimes can be closed given better network design choices and hyperparameter tuning. The evidence shows that unifying different SOTA methods is an important direction to build a better understanding of self-supervised learning.


In-Person Poster presentation / top 25% paper
#147
The Trade-off between Universality and Label Efficiency of Representations from Contrastive Learning

Zhenmei Shi · Jiefeng Chen · Kunyang Li · Jayaram Raghuram · Xi Wu · Yingyu Liang · Somesh Jha

Pre-training representations (a.k.a. foundation models) has recently become a prevalent learning paradigm, where one first pre-trains a representation using large-scale unlabeled data, and then learns simple predictors on top of the representation using small labeled data from the downstream tasks. There are two key desiderata for the representation: label efficiency (the ability to learn an accurate classifier on top of the representation with a small amount of labeled data) and universality (usefulness across a wide range of downstream tasks). In this paper, we focus on one of the most popular instantiations of this paradigm: contrastive learning with linear probing, i.e., learning a linear predictor on the representation pre-trained by contrastive learning. We show that there exists a trade-off between the two desiderata so that one may not be able to achieve both simultaneously. Specifically, we provide analysis using a theoretical data model and show that, while more diverse pre-training data result in more diverse features for different tasks (improving universality), it puts less emphasis on task-specific features, giving rise to larger sample complexity for down-stream supervised tasks, and thus worse prediction performance. Guided by this analysis, we propose a contrastive regularization method to improve the trade-off. We validate our analysis and method empirically with systematic experiments using real-world datasets and foundation models.


In-Person Poster presentation / top 25% paper
#166
Self-supervised learning with rotation-invariant kernels

Léon Zheng · Gilles Puy · Elisa Riccietti · Patrick Perez · Rémi Gribonval

We introduce a regularization loss based on kernel mean embeddings with rotation-invariant kernels on the hypersphere (also known as dot-product kernels) for self-supervised learning of image representations. Besides being fully competitive with the state of the art, our method significantly reduces time and memory complexity for self-supervised training, making it implementable for very large embedding dimensions on existing devices and more easily adjustable than previous methods to settings with limited resources. Our work follows the major paradigm where the model learns to be invariant to some predefined image transformations (cropping, blurring, color jittering, etc.), while avoiding a degenerate solution by regularizing the embedding distribution. Our particular contribution is to propose a loss family promoting the embedding distribution to be close to the uniform distribution on the hypersphere, with respect to the maximum mean discrepancy pseudometric. We demonstrate that this family encompasses several regularizers of former methods, including uniformity-based and information-maximization methods, which are variants of our flexible regularization loss with different kernels. Beyond its practical consequences for state of the art self-supervised learning with limited resources, the proposed generic regularization approach opens perspectives to leverage more widely the literature on kernel methods in order to improve self-supervised learning methods.